Edwin hubble was able to show that (with the exception of our nearest neighbors) the farther a galaxy is from us, the?

Answers

Answer 1

Edwin hubble was able to show that (with the exception of our nearest neighbors) the farther a galaxy is from us, the faster it is moving away from us.

Hubble ultimately demonstrated that, contrary to the widely accepted belief that the universe is static, galaxies are actually moving away from us. Hubble noticed that the light appeared to be shifted toward the red end of the spectrum by observing the light coming from distinct galaxies.

Hubble made the amazing discovery that a galaxy's redshift exactly correlated with its distance from the earth. That implied that objects farther from Earth were dispersing more quickly. To put it another way, the cosmos must be growing. In 1929, he made his discovery public.

Learn more about galaxy here;

https://brainly.com/question/2905713

#SPJ1


Related Questions

a 1024 hz tuning fork is dangled at the end of a string such that its center of mass is 1.2 m below the point at which the other end of the string is attached to door frame, making a pendulum of sorts. the tuning fork may be treated as a point mass for the purposes of this problem. the pendulum is brought to a maximum angle and released. if the range of frequencies heard by an observer standing in the plane of the pendulum's motion is 1020-1028 hz, what is the angle to which the pendulum was raised? the speed of sound is 340 m/s.

Answers

The pendulum was raised to an angle of approximately 1.05 degrees before being released.

The frequency range heard by the observer standing in the plane of the pendulum's motion is due to the Doppler effect. When the pendulum swings towards the observer, the frequency of the sound waves increases, and when it swings away, the frequency decreases. The difference between the maximum and minimum frequency heard is twice the frequency of the pendulum's motion.

We can use the formula for the frequency of a simple pendulum: f = (1/2π) √(g/l), where g is the acceleration due to gravity and l is the length of the pendulum.

Solving for l, we get l = g(1/(2πf))^2.

Substituting g = 9.8 m/s^2, f = 1024 Hz, and l = 1.2 m + string length, we get the length of the string to be 0.251 m.

Now, using the formula for the period of a simple pendulum: T = 2π √(l/g), we can find the time it takes for the pendulum to complete one swing. T = 0.986 seconds.

The range of frequencies heard by the observer is 8 Hz, which is twice the frequency of the pendulum's motion. So, the maximum frequency is 1028 Hz, and the minimum is 1020 Hz.

Using the formula for the Doppler effect: Δf/f = v/cosθ, where Δf is the frequency shift, v is the speed of the pendulum, and θ is the angle between the pendulum and the observer.

Solving for θ, we get θ = cos^-1(vΔf/(fvc)).

Substituting v = 1.2 m/T, Δf = 4 Hz (half the frequency range), f = 1024 Hz, and c = 340 m/s, we get the angle to be 1.05 degrees.

Learn more about pendulum  here:-

https://brainly.com/question/29702798

#SPJ11

Suppose the magnetic field of an electromagnetic wave is given by B = (6.3 ✕ 10^−10) sin(kx − ωt) T.a. What is the average energy density of the magnetic field of this wave?b. What is the average energy density of the electric field?

Answers

The average energy density of the magnetic field of an electromagnetic wave is given by:

u = (1/2)μεB^2

where μ is the permeability of free space, ε is the permittivity of free space, and B is the amplitude of the magnetic field.

a. To find the average energy density of the magnetic field of the wave given by B = (6.3 ✕ 10^-10) sin(kx − ωt) T, we need to first find the amplitude of the magnetic field.

The amplitude is given by the maximum value of the sine function, which is 1. Therefore, the amplitude of the magnetic field is:

B = 6.3 ✕ 10^-10 T

Next, we can substitute the values for μ, ε, and B into the formula for average energy density:

[tex]u = (1/2)μεB^2 = (1/2)(4π ✕ 10^-7 T m/A)(8.85 ✕ 10^-12 F/m)(6.3 ✕ 10^-10 T)^2 = 1.13 ✕ 10^-15 J/m^3[/tex]

Therefore, the average energy density of the magnetic field of the wave is 1.13 ✕ 10^-15 J/m^3.

b. The average energy density of the electric field of an electromagnetic wave is given by:

u = (1/2)εE^2

where E is the amplitude of the electric field.

To find the average energy density of the electric field, we need to first find the amplitude of the electric field. The electric field is related to the magnetic field by the equation:

cB = E

where c is the speed of light. Therefore, the amplitude of the electric field is:

E = cB = (3.00 ✕ 10^8 m/s)(6.3 ✕ 10^-10 T) = 1.89 ✕ 10^-1 V/m

Substituting the values for ε and E into the formula for average energy density, we get:

[tex]u = (1/2)εE^2 = (1/2)(8.85 ✕ 10^-12 F/m)(1.89 ✕ 10^-1 V/m)^2 = 1.60 ✕ 10^-17 J/m^3[/tex]

Therefore, the average energy density of the electric field of the wave is 1.60 ✕ 10^-17 J/m^3.

To know more about refer energy density here

brainly.com/question/26283417#

#SPJ11

A mother sees that her child's contact lens prescription is 1.25 Dwhat is the child's near point, in centimeters? Assume the near point for normal human vision is 25.0 cm.

Answers

Where f is the focal length of the lens, do is the distance between the object and the lens, and di is the distance between the lens and the image.

The prescription of 1.25 D indicates the power of the contact lens. It tells us how much the lens will bend the light that enters it. Using the formula 1/f = 1/do + 1/di, we can calculate the distance between the lens and the image (di) by knowing the distance between the object and the lens (do) and the focal length of the lens (f).

The near point is the closest distance at which an object can be brought into focus. For normal human vision, this distance is 25.0 cm. By calculating the distance between the lens and the image using the prescription and the formula, we can determine the child's near point.


To know more about distance visit

https://brainly.com/question/12319416

#SPJ11

satellite in Earth orbit has a mass of 102 kg and is at an altitude of 1.90 x 106 m. (Assume that u = o as r→ 0 (a) What is the potential energy of the satellite-Earth system? (b) what is the magnitude of the gravitational force exerted by the Earth on the satellite? (c) What force, if any, does the satellite exert on the Earth?

Answers

(a) The potential energy of the satellite-Earth system is -6.02 x 10¹⁰ J.

(b) The magnitude of the gravitational force exerted by the Earth on the satellite is 954 N.

(c) The satellite exerts an equal and opposite gravitational force on the Earth.

(a) The potential energy of the satellite-Earth system can be calculated using the formula:

U = - G * (m₁ * m₂) / r

where G is the gravitational constant, m₁ and m₂ are the masses of the Earth and the satellite respectively, and r is the distance between their centers of mass.

Plugging in the given values, we get:

U = - (6.67 x 10⁻¹¹ N m²/kg²) * (5.98 x 10²⁴ kg * 102 kg) / (6.89 x 10⁶ m + 1.90 x 10⁶ m)

U = -6.02 x 10¹⁰ J

Therefore, the potential energy of the satellite-Earth system is -6.02 x 10¹⁰ J.

(b) The magnitude of the gravitational force exerted by the Earth on the satellite can be calculated using the formula:

F = G * (m₁ * m₂) / r²

Plugging in the given values, we get:

F = (6.67 x 10⁻¹¹ N m²/kg²) * (5.98 x 10²⁴ kg * 102 kg) / (2.80 x 10⁷ m)²

F = 954 N

Therefore, the magnitude of the gravitational force exerted by the Earth on the satellite is 954 N.

(c) According to Newton's third law of motion, the satellite exerts an equal and opposite gravitational force on the Earth. Therefore, the satellite exerts a gravitational force on the Earth with the same magnitude of 954 N, but in the opposite direction.

learn more about gravitational force here:

https://brainly.com/question/12528243

#SPJ11

Which of the following parts of the formal definition of a planet does Pluto fail to meet?
A. It is a celestial body
B. It is found in a roughly round shape
C. It is in orbit around the Sun
D. It has cleared the neighborhood around its orbit

Answers

The part of the formal definition of a planet that Pluto fails to meet is option D: "It has cleared the neighborhood around its orbit."

According to the International Astronomical Union's (IAU) definition of a planet, a celestial body must have cleared its orbit of other debris and objects. Pluto does not meet this criterion as it orbits within the Kuiper Belt, a region of the solar system populated by numerous small objects. Therefore, despite meeting the other criteria, Pluto is classified as a "dwarf planet" rather than a full-fledged planet. This reclassification occurred in 2006 when the IAU revised the definition of a planet. The part of the formal definition of a planet that Pluto fails to meet is option D: "It has cleared the neighborhood around its orbit."

learn more about planet here:

https://brainly.com/question/29765555

#SPJ11

some of the main sources of radioactivity we encounter in everyday life are
a.the earth b.the cosmos. c.food. d.other people. e.air.

Answers

The main sources of radioactivity in everyday life are the earth, cosmos, food, other people, and air (all elements are correct).

In everyday life, there are several main sources of radioactivity that we encounter. These include:

a. The Earth: Radioactive materials such as uranium, thorium, and radon are naturally present in the Earth's crust. Radon, for example, is a radioactive gas that can seep into homes and pose a risk if inhaled in high concentrations.

b. The Cosmos: Cosmic radiation originates from the sun and other celestial bodies. It consists of high-energy particles that constantly bombard the Earth.

While our atmosphere provides some protection, exposure to cosmic radiation is inevitable, especially during air travel or at higher altitudes.

c. Food: Some types of food contain naturally occurring radioactive isotopes, such as potassium-40 and carbon-14. These isotopes are ingested through our diet and contribute to the overall background radiation we receive.

d. Other People: Human bodies contain trace amounts of radioactive isotopes, such as carbon-14 and potassium-40, which emit low levels of radiation.

Close proximity to other people can lead to a slight increase in exposure to radiation.

e. Air: Radon gas, mentioned earlier as originating from the Earth, can accumulate in indoor environments, especially poorly ventilated spaces. Inhalation of radon can contribute to radiation exposure.

For more such questions on radioactivity, click on:

https://brainly.com/question/1236735

#SPJ11

The main sources of everyday life radioactivity include the Earth (naturally occurring radioactive materials), the cosmos (cosmic radiation), food (trace amounts of radioactive isotopes), other people (naturally occurring isotopes in the human body), and air (radon gas).

The main sources of radioactivity we encounter in everyday life are:

a. The Earth: The Earth contains naturally occurring radioactive materials such as uranium, thorium, and radon. These radioactive elements can be found in rocks, soil, and water.

b. The Cosmos: Cosmic radiation comes from outer space and reaches the Earth's surface. It is primarily composed of high-energy particles, such as protons and alpha particles, originating from the Sun and other celestial bodies.

c. Food: Some foods contain trace amounts of radioactive isotopes, such as potassium-40 and carbon-14. These isotopes are naturally present in the environment and can be found in various food sources, including fruits, vegetables, and seafood.

d. Other People: Humans, like all living organisms, naturally contain small amounts of radioactive isotopes, such as potassium-40 and carbon-14, due to biological processes.

e. Air: Radon gas, a radioactive gas formed by the decay of uranium in rocks and soil, can seep into buildings and accumulate in indoor air. Inhalation of radon gas is a common source of radiation exposure.

learn more about Radioactivity here:

https://brainly.com/question/26626062

#SPJ4

The water solubility of cisplatin is reported as 2.53 g/L. What volume in militers of a solution at this concentration would be required to deliver a therapeutic dose of 5.0 mg de an adult male?

Answers


To calculate the volume in milliliters of a solution at a concentration of 2.53 g/L that would deliver a therapeutic dose of 5.0 mg to an adult male, we need to use the following formula:

Volume (in mL) = (mass of drug / concentration of drug in g/L) x 1000


First, we need to convert the therapeutic dose of 5.0 mg into grams by dividing it by 1000:

5.0 mg / 1000 = 0.005 g

Next, we can plug in the values we have into the formula:

Volume (in mL) = (0.005 g / 2.53 g/L) x 1000

Simplifying the equation:

Volume (in mL) = 1.976 mL

Therefore, a volume of 1.976 mL of a solution at a concentration of 2.53 g/L would deliver a therapeutic dose of 5.0 mg to an adult male.

learn more about therapeutic dose

https://brainly.com/question/31780929

#SPJ11

What phrase describes blackbody radiation

Answers

Answer:Light given off by an object based on its color

Explanation:

I believe the answer is :b:

Hope this helps

Brainlist pls

in most non concealed observation it is best to use _____ disclosure.

Answers

In most non-concealed observations, it is best to use overt disclosure.

Overt disclosure refers to openly informing the individuals being observed that they are being watched or studied. This approach is considered ethical and respectful as it allows individuals to provide informed consent and participate willingly in the observation process.

There are several reasons why overt disclosure is preferred in non-concealed observations:

1. Ethical considerations: Overt disclosure respects the rights and autonomy of individuals. It allows them to be aware that they are being observed and gives them the opportunity to give their consent or choose not to participate. Respecting the privacy and dignity of individuals is crucial in research or observational studies.

2. Transparency: Overt disclosure promotes transparency and openness in the research process. It establishes a clear and honest relationship between the observer and the observed. By openly communicating the purpose of the observation, individuals can have a better understanding of the study's objectives and make informed decisions about their involvement.

3. Validity and natural behavior: Overt disclosure can minimize the potential for observer effects and alter the behavior of individuals being observed. When people are aware that they are being watched, they may modify their behavior consciously or subconsciously. By openly disclosing the observation, individuals may feel more comfortable and behave more naturally, leading to more accurate and valid data collection.

4. Trust and cooperation: Overt disclosure helps build trust between the observer and the observed. When individuals are aware that they are being observed and their consent is sought, it fosters a sense of trust and cooperation. This can lead to better participation, more honest responses, and a more positive research environment.

It's important to note that there may be situations where covert or concealed observation is necessary, such as when studying certain sensitive or illegal behaviors where overt disclosure could compromise the validity of the observation. However, in most non-concealed observational contexts, overt disclosure is considered the best practice for ethical and valid data collection. Researchers and observers should always adhere to ethical guidelines and seek institutional review and approval when conducting observations involving human subjects.

To know more about about overt, please click on:

https://brainly.com/question/32257009

#SPJ11

An amusement park ride features a passenger compartment of mass M that s released from rest at point A. as shown in the figure above, and moves along a track to point E. The compartment is in free fall between points A and B. which are a distance of 3R/4 apart, then moves along the circular arc of radius R between points B and D. Assume the track U frictionless from point A to point D and the dimensions of the passenger compartment are negligible compared to R.

Answers

The amusement park ride begins with the passenger compartment at rest at point A. As it moves along the track to point B, the compartment is in free fall due to gravity. The distance between points A and B is 3R/4.

The force acting on the passenger compartment is gravity, which causes it to accelerate downward as it moves from point A to point B. Once the compartment reaches point B, it is no longer in free fall and the force acting on it is centripetal force, which keeps it moving in a circular path along the arc. The dimensions of the passenger compartment are negligible compared to R, which means that its mass can be considered to be concentrated at a single point. This simplifies the calculations involved in determining the ride's motion.

When the passenger compartment is released from rest at point A, it is in free fall between points A and B, which are 3R/4 apart. During this free fall, the gravitational potential energy is being converted into kinetic energy. As it moves along the circular arc of radius R between points B and D, the compartment's speed is determined by the conservation of mechanical energy.

To know more about gravity visit:

https://brainly.com/question/31321801

#SPJ11


a grating that has 3700 slits per cmcm produces a third-order fringe at a 26.0 ∘∘ angle.
Part A
What wavelength of light is being used?
Express your answer to two significant figures and include the appropriate units.

Answers

The wavelength of light being used is approximately 374 nm.

To find the wavelength of light being used in the grating with 3700 slits per cm and a third-order fringe at a 26.0° angle, we can use the grating equation:

nλ = d * sin(θ)

Where:
- n is the order of the fringe (n = 3 in this case)
- λ is the wavelength of light we want to find
- d is the distance between the slits (inverse of the number of slits per cm)
- θ is the angle of the fringe (26.0° in this case)

First, we need to find the distance between the slits (d). Since there are 3700 slits per cm, the distance between the slits is:

d = 1 / 3700 = 0.000270270 cm

Now, we can plug the values into the grating equation:

3λ = 0.000270270 cm * sin(26.0°)

To solve for λ, divide both sides by 3:

λ = (0.000270270 cm * sin(26.0°)) / 3

λ ≈ 3.74 × 10^(-7) cm

Convert the wavelength to nanometers (1 cm = 10^7 nm):

λ ≈ 374 nm

So, the wavelength of light being used is approximately 374 nm.

Learn more about wavelength

brainly.com/question/31143857

#SPJ11

Practice Problem: An old-fashioned vinyl record is designed to turn at 33 rev/min. Find the angular velocity and the average angular accel- eration of the record if it spins through five full rotations before coming to a stop when the record player is turned off. Answers:3.5 rad/s, ? -0.39 rad/s.

Answers

The angular velocity of the record is approximately 3.5 rad/s, and the average angular acceleration is approximately -0.39 rad/s.

The angular velocity of the record can be calculated using the formula:

ω = 2π * f

where f is the frequency of rotation in revolutions per minute (RPM). Substituting the given value, we get:

ω = 2π * 33 RPM = 3.46 rad/s

The record spins through five full rotations, which corresponds to a total angular displacement of:

Δθ = 2π * 5 = 10π

If the record player turns off after this, we can assume that the angular velocity decreases uniformly to zero over a certain period of time. Let's say this time is t.

Therefore, we can write:

ω_i = 3.46 rad/s (initial angular velocity)

ω_f = 0 rad/s (final angular velocity)

Δω = ω_f - ω_i = -3.46 rad/s (change in angular velocity)

Δt = t (time taken for the change)

Using these values, we can calculate the average angular acceleration as:

α_avg = Δω/Δt = (-3.46 rad/s)/t

To know more about the Angular velocity, here

https://brainly.com/question/31110386

#SPJ4

calculate the ph at the equivalence point in titrating 0.120 m solutions of each of the following acids with a solution 0.090 m in naoh.

Answers

The pH at the equivalence point in titrating 0.120 M solutions of weak acids with 0.090 M NaOH cannot be determined without additional information about the specific weak acids.

The pH at the equivalence point of a titration depends on the nature of the acid being titrated. Strong acids, like HCl or H2SO4, have a pH of 7 at the equivalence point because they are fully dissociated and the reaction with NaOH results in the formation of a neutral salt, like NaCl or Na2SO4. However, weak acids, like acetic acid, do not completely dissociate in the solution and form a buffer solution with their conjugate base when titrated with a strong base. The pH of this buffer solution is determined by the acid dissociation constant, Ka, and the concentrations of the acid and its conjugate base. Therefore, to calculate the pH at the equivalence point of a weak acid titrated with a strong base, the pKa of the acid, the initial concentration of the acid, and the volume of the titrant used need to be taken into account. Without this additional information, it is not possible to determine the pH at the equivalence point of the titration.

Learn more about equivalence point here:

https://brainly.com/question/31375551

#SPJ11

a ball of mass 0.70 kg is moving horizontally with a speed of 5.0 m/s when it strikes a vertical wall. the ball rebounds with a speed of 2.0 m/s. what is the magnitude of the change in linear momentum of the ball

Answers

The magnitude of the change in linear momentum of the ball is 4.9 kg m/s.

To find the magnitude of the change in linear momentum of the ball, we can use the following equation:

Change in linear momentum = Final momentum - Initial momentum

First, let's calculate the initial and final momentum:

Initial momentum (m1) = mass (0.70 kg) × initial speed (5.0 m/s) = 3.5 kg m/s

Final momentum (m2) = mass (0.70 kg) × final speed (-2.0 m/s, since it's rebounding) = -1.4 kg m/s

Now, let's find the change in linear momentum:

Change in linear momentum = |m2 - m1| = |-1.4 kg m/s - 3.5 kg m/s| = |(-4.9) kg m/s| = 4.9 kg m/s

The magnitude of the change in linear momentum of the ball can be calculated using the formula:

Δp = m * Δv

Where Δp is the change in momentum, m is the mass of the ball, and Δv is the change in velocity.

In this case, the initial velocity of the ball is 5.0 m/s and the final velocity is -2.0 m/s (since the ball rebounds in the opposite direction). Therefore, the change in velocity is:

Δv = (-2.0 m/s) - (5.0 m/s) = -7.0 m/s

Substituting this value and the mass of the ball (0.70 kg) into the formula:

Δp = (0.70 kg) * (-7.0 m/s)

Δp = -4.9 kg m/s



Learn more about linear momentum  here:-

https://brainly.com/question/30767107

#SPJ11

place the events of the solar system's formation in chronological order from protostellar cloud to present day
Nebula evolves into a disc shape with a dense central bulge.
Solid particles come out of solar nebula.
Grain-sized particles stick together.
Planetesimals and protoplanets form.
Formation of terrestrial planets.
Late stage bombardment.

Answers

Nebula evolves into a disc shape with a dense central bulge.

Solid particles come out of the solar nebula.

Grain-sized particles stick together.

Planetesimals and protoplanets form.

Formation of terrestrial planets.

Late stage bombardment.

The process of the solar system's formation is thought to have occurred in the following chronological order:

Nebula evolves into a disc shape with a dense central bulge: The initial stage involves the collapse of a massive cloud of gas and dust, known as a nebula, under the influence of gravity. As it collapses, the nebula takes on a flattened disc shape with a dense central bulge.

Solid particles come out of the solar nebula: Within the flattened disc of the nebula, solid particles, including dust and ice, begin to condense and coalesce.

Grain-sized particles stick together: The solid particles continue to collide and stick together, forming larger clumps and eventually grain-sized particles.

Planetesimals and protoplanets form: Through further collisions and accretion, the grain-sized particles gather to form larger bodies called planetesimals. These planetesimals continue to grow through additional collisions and accretion, eventually becoming protoplanets.

Formation of terrestrial planets: The protoplanets further accumulate matter and undergo differentiation, leading to the formation of terrestrial planets. Terrestrial planets are characterized by their rocky composition and relatively small size compared to gas giants.

Late stage bombardment: During the late stages of the solar system's formation, there was a period of intense bombardment known as the Late Heavy Bombardment. This period involved a significant amount of impacts from leftover planetesimals and other celestial bodies, causing widespread cratering on the surfaces of the planets and moons.

It is important to note that the precise details of the solar system's formation are still being studied and researched, and our understanding of the process continues to evolve based on new observations and discoveries.

learn more about solar system here:
https://brainly.com/question/32240766

#SPJ11

a particle moving along the xx-axis is in a system with potential energy u=11/xju=11/xj, where xx is in mm. What is the x-component of the force on the particle at x=2.30 m?

Answers

The x-component of the force on the particle at x=2.30 m is 5.60 N.

To find the x-component of the force on the particle, we need to take the derivative of the potential energy with respect to x, which will give us the force. So, we first need to convert the potential energy function into SI units. Since x is given in mm, we need to convert it to meters:

u = 11/xj = 11/(2.30 × 10^-3 m)j = 4.78 × 10^3j J/m

Now, we can take the derivative of u with respect to x:

F = -du/dx = -d(4.78 × 10^3j)/dx = -(-11/x^2)j

Substituting x=2.30 m into the expression, we get:

F = -(-11/(2.30)^2)j = 5.60j N

Therefore, the x-component of the force on the particle at x=2.30 m is 5.60 N.

The x-component of the force on the particle at x=2.30 m is a positive value, indicating that the force is acting in the positive x-direction. This means that the particle is being pulled towards the positive x-direction, which is opposite to the direction of the force.

To know more about particle, visit;

https://brainly.com/question/27911483

#SPJ11

A puck of mass 5 kg moving at 2 m/s approaches an identical puck that is stationary on frictionless ice. After the collision, the first puck leaves with speed v1 at 30 ∘ to the original line of motion, the second puck leaves with speed v2 at 60 ∘ . (a) Calculate v1 and v2 (b) Was the collision elastic?

Answers

a) The value of [tex]V_{1}[/tex] = 2.05 m/s and[tex]V_{2}[/tex] = 1.45 m/s.

b) The collision is not elastic.

We can use conservation of momentum and conservation of energy to solve this problem.

(a) Calculation of[tex]V_{1}[/tex] and [tex]V_{2}[/tex]:

Conservation of momentum in the x-direction:

5 kg × 2 m/s = 5 kg [tex]V_{1}[/tex] cos(30°) + 5 kg [tex]V_{2}[/tex] cos(60°)

Simplifying this equation, we get:

2 = [tex]V_{1}[/tex] cos(30°) +[tex]V_{2}[/tex]cos(60°)

Conservation of momentum in the y-direction:

0 = 5 kg [tex]V_{1}[/tex] sin(30°) - 5 kg [tex]V_{2}[/tex] sin(60°)

Simplifying this equation, we get:

[tex]V_{1}[/tex]sin(30°) = [tex]V_{2}[/tex]sin(60°)

Squaring both sides, we get:

[tex]V_{1}^{2}[/tex] sin^2(30°) = [tex]V_{2}^{2}[/tex] sin^2(60°)

Substituting sin(30°) = 0.5 and sin(60°) = 0.866, we get:

[tex]V_{1}^{2}[/tex] (0.25) = [tex]V_{2}^{2}[/tex] (0.75)

[tex]V_{1}^{2}[/tex] = 3 [tex]V_{2}^{2}[/tex]

Substituting this relation into the equation for conservation of momentum in the x-direction, we get:

2 =[tex]V_{1}[/tex] cos(30°) + [tex]V_{2}[/tex] cos(60°)

2 = ([tex]V_{2}[/tex] [tex]\sqrt{3}[/tex])) / 2 + [tex]V_{2}[/tex] / 2

4 = v2 [tex]\sqrt{3}[/tex] + [tex]V_{2}[/tex]

[tex]V_{2}[/tex] = 1.45 m/s

Substituting this value of [tex]V_{2}[/tex]into the equation for [tex]V_{1}[/tex] we get:

2 = [tex]V_{1}[/tex]cos(30°) + [tex]V_{2}[/tex] cos(60°)

2 = [tex]V_{1}[/tex][tex]\sqrt{3}[/tex]) / 2 + (1.45 m/s) / 2

[tex]V_{1}[/tex]= 2.05 m/s

Therefore,[tex]V_{1}[/tex]= 2.05 m/s and [tex]V_{2}[/tex] = 1.45 m/s.

(b) Calculation of whether the collision is elastic:

To determine if the collision is elastic, we can use the coefficient of restitution (e):

e = ([tex]V_{2}[/tex]f - v1f) / ([tex]V_{2}[/tex]i - v1i)

where [tex]V_{2}[/tex]i and [tex]V_{1}[/tex]i are the initial velocities of the two pucks, and v2f and [tex]V_{1}[/tex]f are their final velocities.

In this case, the initial velocity of the second puck is 0, so the coefficient of restitution simplifies to:

e = [tex]V_{2}[/tex]f / [tex]V_{1}[/tex]i

Substituting the values of [tex]V_{1}[/tex]i and[tex]V_{2}[/tex]f, we get:

e = 1.45 m/s / 2 m/s = 0.725

Since the coefficient of restitution is less than 1, the collision is not elastic. Some kinetic energy is lost during the collision, possibly due to deformation of the pucks or friction between them and the ice.

marek is trying to push a box of sports equipment across the floor. the arrow on the box is a vector representing the force that marek exerts. what are the forces acting upon the box?

Answers

These could include frictional forces from the floor, air resistance, and gravitational forces pulling the box downwards. Depending on the specifics of the situation, there may be other forces at play as well, but these are the most common forces that would need to be considered.

When Marek is pushing a box of sports equipment across the floor, there are several forces acting upon the box. These forces include:

1. Applied force (vector): This is the force exerted by Marek to push the box, represented by the arrow on the box.
2. Frictional force: This acts opposite to the direction of the applied force and opposes the motion of the box on the floor.
3. Gravitational force: This force acts vertically downwards and is the weight of the box due to Earth's gravity.
4. Normal force: This force acts perpendicular to the floor, counterbalancing the gravitational force to keep the box from sinking into the floor.

These four forces interact and determine the overall motion of the box.

Learn more about frictional forces here:-

https://brainly.com/question/30280206

#SPJ11

2.0 g of ne are at 1.5 atm of pressure and 360 k. what volume, in l, does the gas occupy?

Answers

The volume of the gas is 0.072 L. we can use the ideal gas law to solve for the volume of the gas. The ideal gas law is PV=nRT, where P is the pressure, V is the volume, n is the number of moles, R is the gas constant, and T is the temperature in Kelvin.

We are given the pressure, temperature, and number of moles (which we can calculate from the mass of the gas and its molar mass). Rearranging the ideal gas law to solve for V, we get V=nRT/P. Plugging in the values we have, we get V=(2.0 g Ne)/(20.18 g/mol)(0.08206 L*atm/mol*K)(360 K)/(1.5 atm)=0.072 L.

Learn more about occupy here:

https://brainly.com/question/22622383

#SPJ11

an ambulance is generating a siren sound at a frequency of 2,400 hz. the speed of sound is 345.0 m/s. the observer is traveling at a velocity of 24.00 m/s toward the ambulance and the ambulance is traveling at a velocity of 20.00 m/s toward the observer. what is the frequency of the siren perceived by the observer?

Answers

The frequency of the siren perceived by the observer is approximately 2716.31 Hz.

Using the Doppler effect formula, we can calculate the perceived frequency of the siren by the observer. The formula is:

f' = f * (v + vo) / (v + vs)

where:
f' = perceived frequency by the observer
f = source frequency (2,400 Hz)
v = speed of sound (345.0 m/s)
vo = observer's velocity toward the source (24.00 m/s)
vs = source's velocity toward the observer (20.00 m/s, but since it's moving towards the observer, we will use -20.00 m/s)

Substituting the values:

f' = 2400 * (345 + 24) / (345 - 20)

f' = 2400 * 369 / 325

f' ≈ 2716.31 Hz

Learn more about frequency here :-

https://brainly.com/question/29739263

#SPJ11

the earth naturally fluctuates between what concentrations of co2?

Answers

The Earth's carbon dioxide (CO2) concentrations naturally fluctuate between 180 and 280 parts per million (ppm), as seen in ice core records from the past 800,000 years.

The Earth's carbon dioxide levels have been fluctuating naturally over geological timescales due to a range of natural factors, including volcanic activity, the weathering of rocks, and changes in solar radiation. However, since the Industrial Revolution, human activities such as the burning of fossil fuels have significantly increased atmospheric CO2 concentrations, leading to anthropogenic climate change. The pre-industrial era CO2 concentrations of 280 ppm provided a stable climate for human civilization to develop. Currently, the concentration of CO2 is at 415 ppm, a level not seen in at least 3 million years. This significant increase in CO2 concentrations has led to global warming and climate change.

Learn more about concentrations here:

https://brainly.com/question/10725862

#SPJ11

109. what is the de broglie wavelength of a proton whose kinetic energy is 2.0 mev? 10.0 mev?

Answers

The de Broglie wavelength of a proton with kinetic energy of 2.0 MeV is 0.158 nanometers, and for 10.0 MeV, it is 0.079 nanometers.

De Broglie wavelength is calculated using the equation λ = h/p, where h is Planck's constant and p is the momentum of the particle. The momentum of a proton can be calculated using the equation p = √(2mK), where m is the mass of the proton and K is the kinetic energy.  

For a proton with 2.0 MeV kinetic energy, the momentum is √(2(1.67x10^-27 kg)(2x10^6 eV))/c = 3.20x10^-20 kgm/s. Therefore, the de Broglie wavelength is λ = (6.626x10^-34 J*s)/(3.20x10^-20 kgm/s) = 0.158 nm.  

For a proton with 10.0 MeV kinetic energy, the momentum is √(2(1.67x10^-27 kg)(10x10^6 eV))/c = 1.60x10^-19 kgm/s. Therefore, the de Broglie wavelength is λ = (6.626x10^-34 J*s)/(1.60x10^-19 kgm/s) = 0.079 nm.

Learn more about momentum here:

https://brainly.com/question/28523021

#SPJ11

Calculate the angular velocity of Jupiter and the distance a satellite needs to be from Jupiter to attain a geostationary orbit around Jupiter; Jupiter's period around its own axis is 9 hours, 55 minutes, and 29. 69 seconds. Jupiter's mass is 1. 898 × 10^27 kg

Answers

The angular velocity of Jupiter is approximately 0.001753 radians per second. For a satellite to attain a geostationary orbit around Jupiter, it would need to be at a distance of approximately 1,178,000 kilometers from the planet.

To calculate the angular velocity, we use the formula:

Angular velocity (ω) = (2π) / Time period

Converting Jupiter's period to seconds:

9 hours = 9 * 60 * 60 = 32,400 seconds

55 minutes = 55 * 60 = 3,300 seconds

29.69 seconds = 29.69 seconds

Total time period = 32,400 + 3,300 + 29.69 = 35,729.69 seconds

Substituting values into the formula:

ω = (2π) / 35,729.69 ≈ 0.001753 radians per second

To calculate the distance for a geostationary orbit, we use the formula:

Distance = √(G * M / ω²)

Where G is the gravitational constant, M is the mass of Jupiter, and ω is the angular velocity.

Substituting the values:

Distance = √((6.67430 × 10^-11) * (1.898 × 10^27) / (0.001753)²)

≈ 1,178,000 kilometers

learn more about velocity here:

https://brainly.com/question/30559316

#SPJ11

determine the probability of occupying one of the higher-energy states at 70.0 k .

Answers

It is not possible to determine the probability of occupying one of the higher-energy states at 70.0 k without additional information.

In order to calculate the probability of occupying a higher-energy state at a given temperature, we need to know the distribution of energy levels and the relative probabilities of occupying each state. The distribution of energy levels is determined by the system and its interactions, and cannot be determined solely from the temperature. Additionally, the probabilities of occupying each state depend on the specific system and its interactions, and cannot be determined solely from the temperature. Therefore, without additional information about the specific system and its interactions, it is not possible to calculate the probability of occupying a higher-energy state at a given temperature.

Learn more about probability here :

https://brainly.com/question/30034780

#SPJ11

a heat engine does 20.0 jj of work and exhausts 20.0 jj of waste heat during each cycle.What is the engine's thermal efficiency? If the cold-reservoir temperature is 20.0 degree C, what is the minimum possible temperature in degree C of the hot reservoir?

Answers

Therefore, the minimum possible temperature in degree C of the hot reservoir is 313.2 degree C.

The efficiency of a heat engine is given by:

efficiency = (work output) / (heat input)

Since the engine exhausts 20.0 J of waste heat during each cycle, the heat input is equal to the sum of the work output and the waste heat:

heat input = work output + waste heat

heat input = 20.0 J + 20.0 J

heat input = 40.0 J

Therefore, the efficiency of the engine is:

efficiency = (work output) / (heat input)

efficiency = 20.0 J / 40.0 J

efficiency = 0.5 or 50%

The efficiency of the engine is 50%.

The minimum possible temperature in degree C of the hot reservoir can be found using the Carnot efficiency equation:

efficiency = 1 - (T_cold / T_hot)

here T_cold is the temperature of the cold reservoir (in Kelvin) and T_hot is the temperature of the hot reservoir (in Kelvin).

Converting 20.0 degree C to Kelvin, we get:

T_cold = 20.0 degree C + 273.15 = 293.15 K

Substituting the given efficiency of 50% and T_cold into the Carnot efficiency equation, we get:

0.5 = 1 - (293.15 / T_hot)

0.5 = (T_hot - 293.15) / T_hot

Solving for T_hot, we get:

T_hot = 586.3 K = 313.2 degree C (rounded to one decimal place)

To know more about temperature,

https://brainly.com/question/29072206

#SPJ11

The angle of repose for fine sand is [x] degrees. Insert a number. You need to be accurate to within 2 degrees (no partial degrees please - only whole numbers 90, 91 etc.).
The ground motion in a Richter magnitude 7 earthquake is [x] times larger than in a Richter magnitude 4 earthquake.

Answers

The angle of repose for fine sand is 35 degrees.

The ground motion in a Richter magnitude 7 earthquake is 10,000 times larger than in a Richter magnitude 4 earthquake. The angle of repose for fine sand is typically around 34 degrees. This can vary slightly, but it should be accurate within 2 degrees.
The ground motion in a Richter magnitude 7 earthquake is 1,000 times larger than in a Richter magnitude 4 earthquake. This is because each whole number increase on the Richter scale corresponds to a 10-fold increase in ground motion.

To know more about angle of repose visit:

https://brainly.com/question/10218873

#SPJ11

A solid cylinder of mass 2.50 kg and radius 50.0 cm rotates at 2750 rpm about its cylindrical axis. What is the angular momentum of the cylinder?90.0 kg m2/s
1.72x102 kg m2/s
180 kg m2/s
1.30x104 kg m2/s

Answers

The angular momentum of the cylinder is approximately 90.0 kg m²/s.

The angular momentum of a solid cylinder can be found using the formula L = Iω, where L is the angular momentum, I is the moment of inertia, and ω is the angular velocity.

Step 1: Calculate the moment of inertia (I) for the solid cylinder. The formula for the moment of inertia of a solid cylinder is I = (1/2)MR², where M is the mass and R is the radius.
I = (1/2)(2.50 kg)(0.50 m)² = 0.3125 kg m²

Step 2: Convert the given rotational speed from rpm to rad/s.
ω = (2750 rpm)(2π rad/1 min)(1 min/60 s) = 288.48 rad/s

Step 3: Calculate the angular momentum (L) using the formula L = Iω.
L = (0.3125 kg m²)(288.48 rad/s) ≈ 90.14 kg m²/s

To know more about moment of inertia click on below link:

https://brainly.com/question/15246709#

#SPJ11

a compound pendulum consists of a 1.12-m stick pivoted at a small hole drilled at a distance d from the middle of the stick. if the period of oscillation is 3.20 s, find d.

Answers

The distance from the middle of the stick to the pivot point is approximately 0.348 m.

We can use the formula for the period of a compound pendulum, which is T=2π√(I/mgd), where T is the period, I is the moment of inertia of the pendulum, m is the mass of the pendulum, g is the acceleration due to gravity, and d is the distance from the pivot point to the center of mass of the pendulum.
In this case, we can assume that the mass of the pendulum is concentrated at its center of mass, which is located at the midpoint of the stick. The moment of inertia of the pendulum about the pivot point is given by I=(1/12)mL^2+(1/4)m(d^2+(L/2)^2), where L is the length of the stick.
Substituting these values into the formula for the period, we get:
3.20 s = 2π√[(1/12)mL^2+(1/4)m(d^2+(L/2)^2)]/(mgd)
Solving for d, we get:
d = [(1/4)L^2+((T/2π)^2)(L^2/12)]/(T/2π)^2
Plugging in the given values of L=1.12 m and T=3.20 s, we get:
d = [(1/4)(1.12 m)^2+((3.20 s/2π)^2)(1.12 m)^2/12]/(3.20 s/2π)^2
Simplifying this expression, we get:
d ≈ 0.348 m
Therefore, the distance from the middle of the stick to the pivot point is approximately 0.348 m.

To know more about oscillation visit: https://brainly.com/question/30111348

#SPJ11

If the switch in the circuit has been closed for a long time before t=0 but is opened at t= 0, determine ix and vrfor t> 0. Take Vs = 18 V. t=0 x VR 82 12 Ω Vs+ ellw F 1H The value of ixt is (Ae-2t + Be-186) 41 A, where A is and Bis The value of vr() is + e-181)416 v.

Answers

In this circuit, when the switch is opened at t=0, the current through the inductor gradually decreases over time, causing a voltage to develop across the inductor and a corresponding drop in the voltage across the resistor.

Voltage

Based on the given information, we can draw the following circuit diagram:

    +-----R-----+

Vs --|            |

    |            +---> vr

    |            |

    +----L-----x--+  

                  |

                 ---

                 --- ix

                  |

                 GND

where

Vs is the voltage source with a value of 18 V, R is the resistor with a value of 12 Ω, L is the inductor with a value of 1 H, ix is the current through the inductor, and vr is the voltage across the resistor.

Before the switch is opened at t=0, the circuit is in steady-state, which means that the current through the inductor is constant and there is no voltage across the inductor. When the switch is opened at t=0, the current through the inductor cannot change instantaneously, so it will continue to flow in the same direction but will gradually decrease over time.

As the current decreases, a voltage will develop across the inductor, which will oppose the change in current.

To solve for ix and vr for t>0, we can use the differential equation that describes the behavior of the circuit:

[tex]L(di/dt) + R\times i = Vs[/tex]

where

i is the current through the inductor, di/dt is the rate of change of the current, and Vs is the voltage source.

Taking the derivative of both sides with respect to time, we get:

[tex]L(d^2i/dt^2) + R(di/dt) = 0[/tex]

This is a second-order linear homogeneous differential equation with constant coefficients. The characteristic equation is:

[tex]Lr^2 + Rr = 0[/tex]

which has two roots:

r1 = 0r2 = -R/L

The general solution to the differential equation is therefore:

[tex]i(t) = Ae^{(r1t)} + Be^{(r2t)}[/tex]

[tex]= A + Be^{(-R/L\times t)}[/tex]

where

A and B are constants that depend on the initial conditions.

To solve for A and B, we can use the initial conditions at t=0. Before the switch is opened, the current through the inductor is constant, so we have:

[tex]i(0-) = i(0+) = ix[/tex]

After the switch is opened, the voltage across the inductor is zero, so we have:

[tex]vL(0+) = 0[/tex]

Using Ohm's law, we can write:

[tex]vR = iR[/tex]

where

vR is the voltage across the resistor, which is equal to vr.

Therefore, we have:

[tex]vr = iR = (di/dt)\times R[/tex]

Taking the derivative of the equation for i(t), we get:

[tex]di/dt = -B\times (R/L)e^{(-R/Lt)}[/tex]

Using the initial condition vL(0+) = 0, we can write:

[tex]vL = L(di/dt)[/tex]

Substituting in the expression for di/dt and integrating with respect to time, we get:

[tex]vL = -BR/L \times (e^{(-R/L\timest)} - 1)[/tex]

Using the fact that vL = 0 at t=0+, we can solve for B:

B = ix*R/L

Substituting this expression for B into the equation for i(t), we get:

i(t) = ix + (Vs/R - ix)e^(-R/Lt)

This matches the given expression for i(t), so we can confirm that:

A = ixVs/R - ix = BR/LB = ixR/L

To solve for vr, we can use the equation:

[tex]vr = (di/dt)R[/tex]

[tex]vL = -BR/L \times (e^{(-R/L\times t)} - 1)[/tex]

Therefore, in this circuit, when the switch is opened at t=0, the current through the inductor gradually decreases over time, causing a voltage to develop across the inductor and a corresponding drop in the voltage across the resistor.

Learn more about voltage : brainly.com/question/25970116

#SPJ11

Calculate the area to the right of 0.57 under the t-distribution with 17 degrees of freedom. Give your answer to 4 decimal places.
Your Answer:

Answers

The area under the t-distribution with 17 degrees of freedom rounded to 4 decimal places, is 0.2908.

How to calculate the area to the right of a specific value under the t-distribution with a given degree of freedom?

To calculate the area to the right of 0.57 under the t-distribution with 17 degrees of freedom, we can use a t-distribution table or a statistical calculator. Here, I'll use the t-distribution table:

Looking up the value 0.57 in the t-distribution table with 17 degrees of freedom, we find the area to the left of 0.57 is 0.7092.

Since we want the area to the right of 0.57, we subtract the area to the left from 1:

Area to the right = 1 - 0.7092 = 0.2908

Rounding this to 4 decimal places, the area to the right of 0.57 under the t-distribution with 17 degrees of freedom is approximately 0.2908.

Learn more about t-distribution.

brainly.com/question/13574945

#SPJ11

Other Questions
Which organelle is responsible for producing the energy for cellular processes?organelle Aorganelle Eorganelle Forganelle G find HM if HG=18, FM=5, and EM=9 that any pair of congruent triangles is similar True or false. The difference in measure of two complemenatary angles is 12 find the measure of the angles Larry purchased a Leisure Lawnmower because the company salesperson intentionally misled him by assuring him that the mower was self-propelled, had a mulching feature, and had a five-year unlimited manufacturer's warranty. When Fred finds out that his new Leisure Lawnmower is not self-propelled, does not mulch, and has a 90-day warranty, he may successfully sue for a. reformation of the contract only. b. restitution and possibly punitive damages. c. compensatory damages only. d. restitution only. Two liquids are in a graduated cylinder - liquid a has a density of 1.004 g/cm3 and liquid b has a density of 0.6223 g/cm3 . assuming that they do not mix, which liquid is on top and which liquid is on bottom? where would you expect to find the plastic cube from question #2 if it is dropped into the graduated cylinder with these two liquids? After you have reached a certain limit that you must pay for the deductible and coinsurance, the insurance company covers 100% of any additional cost. This is called The debit to work-in process for materials used in production is recorded at ______. ASAP must be done today Where is information found concerning acceptable species substitutions for wood materials used in aircraft repair What word do we use when we describe an economy with a high unemployment rate and little growth while prices are still rising? the vertices of abc are a (-6,-7) b(-3,-10) and c(-5,2) find the vertices of abc given the transition rule (x,y)-->(x,y-3) When we determine the age of the universe using the Hubble Time, what important simplifying assumption goes into our calculations which findings from the client's history would be symptoms of insomnia disorder select all the apply fatigue panic attacks acute pain what is a benefit of genetic engineeringA: Does not require any technology.B: Supported by long term research.C: No controversy surrounding its use.D: Can produce non naturally occurring traits. All of the following are part of the informal interview EXCEPT Group of answer choices conversation style dialogue when the interviewee controls the flow of the conversation structured questions conversation in an comfortable setting for the interviewee Flag question: Question 6 Two planets X and Y travel counterclockwise in circular orbits about a star, as seen in the figure.The radii of their orbits are in the ratio 4:3. At some time, they are aligned, as seen in (a), making a straight line with the star. Five years later, planet X has rotated through 88.0, as seen in (b). By what angle has planet Y rotated through during this time? what is cpu?please give me right answer Determine the function f(x)= kx+m if f(x-1)-f(x)=2 and f(-2)=1-m Triangle abc has vertices at A(-6, 3) , B(3, 5) and C(1, -4). Show that triangle abc is isosceles and find the area of this triangle.