Potassium metal reacts with chlorine gas to form solid potassium chloride. Answer the following:
Write a balanced chemical equation (include states of matter)
Classify the type of reaction as combination, decomposition, single replacement, double replacement, or combustion
If you initially started with 78 g of potassium and 71 grams of chlorine then determine the mass of potassium chloride produced.

Answers

Answer 1

The reaction between pottasium metal and chlorine gas is an example of combination reaction and the balanced equation is as follows: 2K + Cl₂ → 2KCl

What is a chemical equation?

A chemical equation is a symbolic representation of a chemical reaction where reactants are represented on the left, and products on the right.

A chemical equation is said to be balanced when the number of atoms of each element on both sides of the equation are the same.

According to this question, potassium metal reacts with chlorine gas to form solid potassium chloride. The balanced equation is as follows:

2K + Cl₂ → 2KCl

Based on the above equation, pottasium combines with chlorine chemically to form pottasium chloride compound, hence, it is an example of combination reaction.

Learn more about combination reaction at: https://brainly.com/question/32027270

#SPJ1


Related Questions

a sample of gas occupies a volume of 237.5 ml at 763.2 torr and 273.2 k. what volume will the sample occupy at 950.0 torr if the temperature is held constant?

Answers

A sample of gas occupies 175.6 ml volume will the sample occupy at 950.0 torr if the temperature is held constant.

To solve this problem, we can use the combined gas law equation, which states that the product of pressure and volume is directly proportional to the temperature. This equation can be expressed as P1V1/T1 = P2V2/T2, where P1, V1, and T1 are the initial pressure, volume, and temperature, and P2 and V2 are the final pressure and volume.
Using the given values, we have P1 = 763.2 torr, V1 = 237.5 ml, T1 = 273.2 K, and P2 = 950.0 torr. We need to find V2.
First, we can rearrange the equation to solve for V2: V2 = (P1V1T2)/(P2T1). Then, we can substitute the values and calculate:
V2 = (763.2 torr x 237.5 ml x 273.2 K)/(950.0 torr x 273.2 K)
V2 = 175.6 ml
Therefore, the sample of gas will occupy a volume of 175.6 ml at 950.0 torr if the temperature is held constant. It is important to note that in this calculation, we assumed that the amount of gas and the type of gas remained constant.

To know more about temperature visit:

brainly.com/question/24453878

#SPJ11

How much KH2PO4 solid will you need to weigh out to make 50.00 mL of 0.10 M KH2PO4 solution? A) 0.87 grams B) 0.68 grams C) 0.037 grams D) 6.8 grams

Answers

To make 50.00 mL of 0.10 M KH₂PO₄ solution, (B) 0.68 grams of KH₂PO₄ solid is needed.

To calculate the amount of KH₂PO₄ solid required to make a 50.00 mL of 0.10 M KH₂PO₄ solution, we can use the following formula:

moles of solute = molarity x volume (in liters)

First, we need to convert the volume to liters:

50.00 mL = 0.05000 L

Then, we can rearrange the formula to solve for moles of solute:

moles of solute = molarity x volume

moles of solute = 0.10 mol/L x 0.05000 L

moles of solute = 0.005 mol

Finally, we can use the molar mass of KH₂PO₄ to calculate the mass of the solute:

mass of solute = moles of solute x molar mass

mass of solute = 0.005 mol x 136.09 g/mol

mass of solute = 0.68045 g

Therefore, the amount of KH₂PO₄ solid required to make a 50.00 mL of 0.10 M KH₂PO₄ solution is 0.68 grams. The answer is B.

To know more about the refer KH₂PO₄ here :
https://brainly.com/question/28300117#

#SPJ11

The reaction Cu(s) + 2 AgNO3(aq) → Cu(NO3)2(aq) + 2 Ag(s) is best classified as a(n)
acid-base neutralization reaction.
double replacement reaction.
oxidation-reduction reaction.
precipitation reaction.

Answers

Copper (Cu) loses electrons and gets oxidized, while silver ions (Ag+) gain electrons and get reduced. The transfer of electrons in this process confirms that it's an oxidation-reduction (redox) reaction.

The reaction Cu(s) + 2 AgNO3(aq) → Cu(NO3)2(aq) + 2 Ag(s). This reaction is best classified as an oxidation-reduction reaction.

oxidation-reduction reaction This is because there is a transfer of electrons between the reactants. The copper atom in Cu(s) loses two electrons to become Cu2+ in Cu(NO3)2(aq), while the two silver ions in AgNO3(aq) each gain one electron to become Ag(s). This is a classic example of a redox reaction.)

In this reaction, copper (Cu) loses electrons and gets oxidized, while silver ions (Ag+) gain electrons and get reduced. The transfer of electrons in this process confirms that it's an oxidation-reduction (redox) reaction.

Learn more about oxidation-reduction reaction.

brainly.com/question/19528268

#SPJ11

A gas has a volume of 100. 0 mL at a pressure of 600. 0 mm Hg. If the temperature is held constant, what is the


volume of the gas at a pressure of 800. 0 mm Hg?

Answers



at a pressure of 800.0 mm Hg, the volume of the gas would be 75.0 mL, assuming the temperature remains constant.To find the volume of the gas at a pressure of 800.0 mm Hg, we can use Boyle's Law.

 which states that the pressure and volume of a gas are inversely proportional when temperature is held constant. Mathematically, this can be represented as P1V1 = P2V2, where P1 and V1 are the initial pressure and volume, and P2 and V2 are the final pressure and volume.

Given:
P1 = 600.0 mm Hg
V1 = 100.0 mL
P2 = 800.0 mm Hg

Using the formula, we can rearrange it to solve for V2:
V2 = (P1 * V1) / P2

Plugging in the values:
V2 = (600.0 mm Hg * 100.0 mL) / 800.0 mm Hg

Canceling the units:
V2 = (600.0 * 100.0) / 800.0
V2 = 75.0 mL

Therefore, at a pressure of 800.0 mm Hg, the volume of the gas would be 75.0 mL, assuming the temperature remains constant.

 To  learn  more  about temperatures click here:brainly.com/question/14045710

#SPJ11

what is the percent composition by mass of carbon in a 2.55 g sample of propanol, ch3ch2ch2oh? the molar mass of propanol is 60.09 g∙mol–1.

Answers

The molecular formula of propanol is C3H8O. To calculate the percent composition by mass of carbon, we need to find the mass of carbon in a 2.55 g sample of propanol.

The molar mass of propanol is 60.09 g/mol, which means that one mole of propanol has a mass of 60.09 g. The number of moles of propanol in 2.55 g can be calculated as follows:

number of moles = mass / molar mass

number of moles = 2.55 g / 60.09 g/mol

number of moles = 0.0425 mol

The number of moles of carbon in one mole of propanol is 3, since the molecular formula of propanol is C3H8O. Therefore, the number of moles of carbon in 0.0425 mol of propanol is:

moles of carbon = 3 × moles of propanol

moles of carbon = 3 × 0.0425 mol

moles of carbon = 0.1275 mol

The mass of carbon in 2.55 g of propanol is:

mass of carbon = moles of carbon × atomic mass of carbon

mass of carbon = 0.1275 mol × 12.01 g/mol

mass of carbon = 1.53 g

Finally, the percent composition by mass of carbon in a 2.55 g sample of propanol is:

percent composition by mass = (mass of carbon / total mass) × 100%

percent composition by mass = (1.53 g / 2.55 g) × 100%

percent composition by mass = 60.0% (to one decimal place)

Therefore, the percent composition by mass of carbon in a 2.55 g sample of propanol is 60.0%.

To know more about propanol refer here

https://brainly.com/question/9345701#

#SPJ11

Calculate the ph of a 100ml buffer solution of 0.175m hclo and 0.15m naclo

Answers

The pH of a 100 ml buffer solution of 0.175 M HClO and 0.15 M NaClO is 7.18.

To calculate the pH of a buffer solution, we need to use the Henderson-Hasselbalch equation:

pH = pKa + log([A-]/[HA])

Where pKa is the dissociation constant of the weak acid, [A-] is the concentration of the conjugate base, and [HA] is the concentration of the weak acid.

In this case, the weak acid is HClO and its pKa is 7.54. The conjugate base is ClO-.

First, we need to calculate the concentrations of the weak acid and the conjugate base:

[HClO] = 0.175 M

[ClO-] = 0.15 M

Next, we need to calculate the ratio of the concentrations of the conjugate base to the weak acid:

[ClO-]/[HClO] = 0.15/0.175 = 0.857

Now we can use the Henderson-Hasselbalch equation to calculate the pH:

pH = 7.54 + log(0.857) = 7.18

Therefore, the pH of a 100 ml buffer solution of 0.175 M HClO and 0.15 M NaClO is 7.18.

Learn more about buffer solution here,

https://brainly.com/question/8676275

#SPJ11

Susie wants to make a solution in the lab she is given 3 moles of barium fluoride (baf2) this solute is placed in 2L of water,what is the concentration?????????

Answers

the concentration of the barium fluoride solution is 1.5 M, indicating that there are 1.5 moles of BaF2 dissolved in every liter of the solution.

To calculate the concentration of the barium fluoride (BaF2) solution, we need to determine the moles of BaF2 and divide it by the volume of water.

Given:
Moles of BaF2 = 3 moles
Volume of water = 2 L

Concentration is defined as moles of solute per liter of solution. We can calculate it using the following formula:

Concentration = Moles of Solute / Volume of Solution

In this case, the volume of the solution is the same as the volume of water.

Concentration = 3 moles / 2 L

To simplify the calculation, we can express the concentration in units of moles per liter (M).

Concentration = 1.5 M

Therefore, the concentration of the barium fluoride solution is 1.5 M, indicating that there are 1.5 moles of BaF2 dissolved in every liter of the solution.

 To  learn  more  about barium click here:brainly.com/question/30888146

#SPJ11

Use the information provided to determine the maximum (theoretical) amount of CaCO3, in grams, that can be produced from the precipitation reaction. Initial: CaCl2•2H2O (g) - 1.50g Initial: CaCl2•2H2O (mol) - 147.02 g/mol Initial: CaCl2 (mol) - 0.0102 mol Initial: Na2CO3 (mol) - 106g/mol Initial: Na2CO3 (g) - 1.081

Answers

The maximum amount of [tex]CaCO_3[/tex] that can be produced is 0.0102 mol x 100.09 g/mol = 1.01 g.

To determine the maximum amount of [tex]CaCO_3[/tex] that can be produced from the given reaction, we need to first find the limiting reactant.

This can be done by comparing the number of moles of CaCl2 and [tex]Na_2CO_3[/tex].

From the given information, we know that the number of moles of [tex]CaCl_2[/tex] is 0.0102 mol, while the number of moles of [tex]Na_2CO_3[/tex] is not provided.

However, we can use the mass of [tex]Na_2CO_3[/tex] (1.081 g) and its molar mass (106 g/mol) to calculate the number of moles: 1.081 g / 106 g/mol = 0.0102 mol.

Since the number of moles of both reactants is the same, neither is in excess, and [tex]CaCl_2[/tex] is the limiting reactant.

The maximum amount of [tex]CaCO_3[/tex] that can be produced is therefore 0.0102 mol x 100.09 g/mol = 1.01 g.

For more such questions on maximum, click on:

https://brainly.com/question/26567900

#SPJ11

The maximum theoretical amount of CaCO3 that can be produced is 0.0102 mol, which is equivalent to 1.499 g.

This is based on stoichiometry, where one mole of CaCl2 reacts with one mole of Na2CO3 to produce one mole of CaCO3.

To calculate the maximum amount of CaCO3 produced, first determine the limiting reagent, which is the reactant that will be completely used up in the reaction. In this case, the limiting reagent is CaCl2 because there is less of it than Na2CO3.

Next, use the stoichiometric ratio between CaCl2 and CaCO3 to determine how much CaCO3 can be produced from the given amount of CaCl2. Since one mole of CaCl2 produces one mole of CaCO3, and there are 0.0102 mol of CaCl2, the maximum amount of CaCO3 that can be produced is also 0.0102 mol.

Finally, convert the amount of CaCO3 in moles to grams using its molar mass of 100.09 g/mol. The maximum amount of CaCO3 that can be produced is therefore 1.499 g.

Learn more about CaCO3 here:

https://brainly.com/question/30260402

#SPJ11

Consider the following reaction in aqueous solution, 5Br?(aq)+BrO3?(aq)+6H+(aq)?3Br2(aq)+3H2O(l) If the rate of appearance of Br2 at a particular moment during the reaction is 0.025 M s-1, what is the rate of disappearance (in M s-1) of Br- at that moment?

Answers

The rate of disappearance of Br^-(aq) at the particular moment during the reaction is 0.0417 M s^-1.

According to the balanced chemical equation, for every 5 moles of Br-(aq) that reacts, 3 moles of Br2(aq) are created. As a result, the rate of disappearance of Br-(aq) is 5/3 that of the rate of appearance of Br2(aq).

This relationship can be expressed mathematically as:

(5/3) x (rate of appearance of Br2(aq)) = (rate of disappearance of Br-(aq))

Substituting 0.025 M s-1 for the indicated rate of appearance of Br2(aq), we get:

(rate of Br-(aq) disappearance) = (5/3) x 0.025 M s-1

When we simplify this expression, we get:

(Br-(aq) disappearance rate) = 0.0417 M s-1

As a result, the rate of disappearance of Br-(aq) at the specific point in the reaction is 0.0417 M s-1.

For such more question on reaction:

https://brainly.com/question/11231920

#SPJ11

The rate of disappearance of Br^-(aq) at the particular moment during the reaction is 0.0417 M s^-1.According to the balanced chemical equation, for every 5 moles of Br-(aq) that reacts, 3 moles of Br2(aq) are created.

As a result, the rate of disappearance of Br-(aq) is 5/3 that of the rate of appearance of Br2(aq).This relationship can be expressed mathematically as:(5/3) x (rate of appearance of Br2(aq)) = (rate of disappearance of Br-(aq))Substituting 0.025 M s-1 for the indicated rate of appearance of Br2(aq), we get:(rate of Br-(aq) disappearance) = (5/3) x 0.025 M s-1When we simplify this expression, we get:(Br-(aq) disappearance rate) = 0.0417 M s-1As a result, the rate of disappearance of Br-(aq) at the specific point in the reaction is 0.0417 M s-1.

Learn more about disappearance here:

brainly.com/question/11231920

#SPJ11

what is the mass of 1.77 ×1025 zinc atoms?

Answers

The mass of 1.77 × 10²⁵ zinc atoms is approximately 296 grams.

The molar mass of zinc (Zn) is 65.38 g/mol, which means that one mole of zinc atoms has a mass of 65.38 grams. Avogadro's number (N_A) is the number of atoms or molecules in one mole of a substance and is equal to 6.022 × 10²³. Therefore, the mass of one zinc atom can be calculated as follows:

Mass of one zinc atom = (65.38 g/mol) / (6.022 × 10²³ atoms/mol)

= 1.09 × 10⁻²² g/atom

To calculate the mass of 1.77 × 10²⁵ zinc atoms, we can simply multiply the mass of one zinc atom by the number of atoms:

Mass of 1.77 × 10²⁵ zinc atoms = (1.77 × 10²⁵ atoms) × (1.09 × 10⁻²² g/atom)

≈ 296 g

To know more about molar mass, refer here:

https://brainly.com/question/7585012#

#SPJ11

A balloon's volume is 3. 5 liters at a pressure of 4. 2 atm. What was the original volume of the balloon when the pressure was 2. 8 atm? *


How many liters will 2. 5 moles of gas occupy at 322 K and. 90 atm of pressure?


What is the new pressure of a 2. 5 liter balloon if the original volume was 6. 2 liters at a pressure of 3. 3 atm?


A 13. 5 liter balloon is heated from 248 K to 324 K. What will its new volume be?

Answers

a. the original volume of the balloon when the pressure was 2.8 atm is 5.25 liters.

b. 2.5 moles of gas will occupy 63.83 liters at 322 K and 0.90 atm of pressure.

c. the new pressure of a 2.5 liter balloon if the original volume was 6.2 liters at a pressure of 3.3 atm is 8.32 atm.

d. the new volume of a 13.5 liter balloon is 18.51 liters.

a. The given data are:

Volume of the balloon at 4.2 atm pressure = 3.5 liters

Pressure of the balloon at which volume to be found = 2.8 atm

The relationship between pressure and volume is given by Boyle's law which states that at a constant temperature, the product of pressure and volume is a constant.

Now, the formula for Boyle's law is:

P1V1 = P2V2

Substituting the given values in the above formula, we get:

P1 = 4.2 atm, V1 = 3.5 liters, P2 = 2.8 atm, V2 = ?

Therefore, 4.2 * 3.5 = 2.8 * V2

V2 = 5.25 liters

b. The formula for the ideal gas law is:

PV = nRT

Where

P is the pressure of the gas

V is the volume of the gas

n is the number of moles of gas

R is the gas constant

T is the temperature of the gas

Now, the formula for calculating the volume of a gas from the ideal gas law is:

V = nRT/P

Substituting the given values in the above formula, we get:

V = (2.5 moles)(0.0821 L·atm/mol·K)(322 K) / (0.90 atm)

V = 63.83 L

c. The relationship between volume and pressure is given by Boyle's law which states that at a constant temperature, the product of pressure and volume is a constant.

The formula for Boyle's law is:

P1V1 = P2V2

Substituting the given values in the above formula, we get:

P1 = 3.3 atm, V1 = 6.2 liters, P2 = ?, V2 = 2.5 liters

Therefore, 3.3 * 6.2 = V2 * 2.5V2 = 8.32 atm

d. The relationship between volume and temperature is given by Charles's law which states that at a constant pressure, the volume of a gas is directly proportional to its temperature.

The formula for Charles's law is:

V1 / T1 = V2 / T2

where

V1 is the initial volume

T1 is the initial temperature

V2 is the final volume

T2 is the final temperature

Substituting the given values in the above formula, we get:

V1 = 13.5 liters, T1 = 248 KV2 = ?, T2 = 324 K

Thus, 13.5 / 248 = V2 / 324

V2 = 18.51 liters

To learn more about Boyle's law, refer:-

https://brainly.com/question/23715689

#SPJ11

(a) which species has the highest energy-filled or partially-filled orbitals?

Answers

The species with the highest energy-filled or partially-filled orbitals is the one with electrons occupying the highest energy level or subshell in its electron configuration.

The species with the highest energy-filled or partially-filled orbitals depends on the specific element or molecule being considered. In general, however, atoms and molecules with a partially-filled valence shell (outermost shell) tend to have higher energy-filled orbitals compared to those with a fully-filled valence shell. This is because partially-filled orbitals have more unpaired electrons, which can interact more readily with other electrons and other atoms/molecules. Additionally, elements with a higher atomic number tend to have higher energy-filled orbitals due to the increased number of electrons and protons in their nucleus.
Based on the terms provided, I can give you a general answer:  In such species, electrons reside in orbitals that are farther from the nucleus and require more energy to maintain their positions.

To know more about electron visit:

https://brainly.com/question/12001116

#SPJ11

what is the proeutectoid phase for an iron– carbon alloy in which the mass fractions of total ferrite and total cementite are 0.86 and 0.14, respectively? (2 pts.)

Answers

The proeutectoid phase in the given iron-carbon alloy with mass fractions of total ferrite and total cementite of 0.86 and 0.14, respectively, is ferrite, with a mass fraction of 55%.

To determine the proeutectoid phase in an iron-carbon alloy with given mass fractions of total ferrite and total cementite, we first need to determine the eutectoid composition of the alloy.

Step 1: Determine the eutectoid composition

The eutectoid composition is the composition of the alloy at which the eutectoid reaction occurs, which is the transformation of austenite to pearlite. For iron-carbon alloys, the eutectoid composition is 0.8% carbon.

Step 2: Compare the alloy composition to the eutectoid composition

The alloy composition given in the question has a higher carbon content than the eutectoid composition, so it is a hypereutectoid alloy.

Step 3: Determine the mass fraction of proeutectoid ferrite

For a hypereutectoid alloy, the proeutectoid phase is ferrite. The mass fraction of proeutectoid ferrite can be calculated using the lever rule:

mass fraction of proeutectoid ferrite = (C - Ce)/(Ceut - Ce)

where C is the carbon content of the alloy, Ce is the eutectoid carbon content, and Ceut is the carbon content of the alloy at which the proeutectoid phase starts to form.

Ceut can be calculated using the lever rule for the proeutectoid cementite:

mass fraction of proeutectoid cementite = (Ceut - C)/(Ceut - Ce)

The mass fractions of total ferrite and total cementite are given in the question as 0.86 and 0.14, respectively. Therefore, we can write:

0.86 = (Ceut - 0.8)/(6.7 - 0.8) --> Ceut = 1.37%

0.14 = (1.37 - C)/(1.37 - 0.8) --> C = 0.96%

Therefore, the proeutectoid phase in this iron-carbon alloy is ferrite, and its mass fraction is:

mass fraction of proeutectoid ferrite = (0.96 - 0.8)/(1.37 - 0.8) = 0.55 or 55%.

To learn more about proeutectoid phase

https://brainly.com/question/29573462

#SPJ4

if you measure the ph of a carbonic acid solution to be 5.6, what is the concenration of the h3o in solution?

Answers

The concentration of the H₃O⁺ in the carbonic acid solution with pH equal to 5.6 is approximately 2.51 × 10⁻⁶ M.

To determine the concentration of H₃O⁺ (hydronium ions) in a carbonic acid solution with a pH of 5.6, you can use the following formula:

pH = -log₁₀[H₃O⁺]

First, rearrange the formula to solve for [H₃O⁺]:

[H₃O⁺] = 10^(-pH)

Next, substitute the given pH value (5.6) into the formula:

[H₃O⁺] = 10^(-5.6)

[H₃O⁺] ≈ 2.51 × 10⁻⁶ M

So, the concentration of H₃O⁺ in the carbonic acid solution is approximately 2.51 × 10⁻⁶ M.

Learn more about pH here: https://brainly.com/question/26424076

#SPJ11

what mass of ni2 is produced in solution by passing a current of 67.0 a for a period of 11.0 h , assuming the cell is 90.0 fficient?

Answers

Total, 140 g of Ni²⁺ are produced in solution by passing a current of 67.0 A for a period of 11.0 h, assuming the cell is 90.0% efficient.

To determine the mass of Ni²⁺ produced in solution, we use Faraday's law of electrolysis, which relates the amount of substance produced in an electrolytic cell to the amount of electric charge passed through the cell.

Equation to calculate amount of substance produced wil be;

moles of substance = (electric charge / Faraday's constant) × efficiency

where; electric charge is amount of charge passed through the cell, in coulombs (C)

Faraday's constant is the conversion factor which relates with coulombs to moles of substance, and having a value of 96,485 C/mol e-

efficiency is efficiency of the cell, expressed as a decimal

We can then use the moles of substance produced to calculate the mass using molar mass of Ni²⁺, which is 58.69 g/mol.

First, let's calculate electric charge passed through the cell;

electric charge = current × time

where; current is current passing through the cell, in amperes (A)

time is time the current is applied, in hours (h)

Plugging in the values given;

electric charge = 67.0 A × 11.0 h × 3600 s/h

= 267,732 C

Next, let's calculate moles of Ni²⁺ produced;

moles of Ni²⁺ = (267,732 C / 96,485 C/mol e-) × 0.90

= 2.39 mol

Finally, let's calculate mass of Ni²⁺ produced:

mass of Ni²⁺ = moles of Ni²⁺ × molar mass of Ni²⁺

mass of Ni²⁺ = 2.39 mol × 58.69 g/mol = 140 g

Therefore, 140 g of Ni²⁺ are produced in solution.

To know more about Faraday's law of electrolysis here

https://brainly.com/question/13104984

#SPJ4

what is the ph when the [oh-] = 7.27 x 10-11 m at 25 oc?

Answers

The pH when the [OH⁻] = 7.27 x 10⁻¹¹ M at 25 °C is 3.86.

The concentration of hydroxide ions and the pH of a solution are related through the equation:

pH + pOH = 14

where pH is the negative logarithm of the concentration of hydrogen ions ([H⁺]) and pOH is the negative logarithm of the concentration of hydroxide ions ([OH⁻]).

In this case, we are given the concentration of hydroxide ions ([OH⁻] = 7.27 x 10⁻¹¹ M), and we can use this information to calculate the pOH of the solution:

pOH = -log[OH⁻] = -log(7.27 x 10⁻¹¹) = 10.14

Using the equation pH + pOH = 14, we can then calculate the pH of the solution:

pH = 14 - pOH = 14 - 10.14 = 3.86

Therefore, the pH when the [OH⁻] = 7.27 x 10⁻¹¹ M at 25 °C is 3.86.

To know more about negative logarithm refer here:

https://brainly.com/question/30287515#

#SPJ11

Use tabulated electrode potentials to calculate ?G? for the reaction.
2Li(s)+2H2O(l)?H2(g)+2OH?(aq)+2Li+(aq)
Express your answer to three significant figures and include the appropriate units.
G = Is the reaction spontaneous?
yes
no

Answers

Answer:The half-reactions for the given overall reaction are:

2Li+ (aq) + 2e- → 2Li(s)   E° = -3.04 V

2H2O(l) + 2e- → H2(g) + 2OH-(aq)   E° = -0.83 V

The overall reaction is obtained by adding the two half-reactions and cancelling the electrons:

2Li(s) + 2H2O(l) → H2(g) + 2OH-(aq) + 2Li+(aq)

The standard cell potential, E°cell, is the difference between the two half-reactions:

E°cell = E°reduction - E°oxidation

E°cell = (-0.83 V) - (-3.04 V)

E°cell = 2.21 V

The Gibbs free energy change, ?G?, is related to the standard cell potential, E°cell, through the equation:

?G° = -nFE°cell

where n is the number of electrons transferred in the reaction and F is the Faraday constant (96,485 C/mol).

In this case, n = 2 (since two electrons are transferred in each half-reaction) and:

?G° = -2 × 96,485 C/mol × 2.21 V

?G° = -423,068 J/mol

?G° = -423 kJ/mol (to three significant figures)

Since the value of ?G° is negative, the reaction is spontaneous.

Answer: ?G° = -423 kJ/mol. The reaction is spontaneous.

Learn more about Electrochemistry:

https://brainly.com/question/31955958?referrer=searchResults

#SPJ11

Using standard reduction potentials from the ALEKS Data tab, calculate the standard reaction free energy ΔG0 for the following redox reaction.Round your answer to
3 significant digits.
H2(g) + 2OH−(aq) + Zn2+(aq) → 2H2O(l) + Zn(s)

Answers

The standard reaction free energy ΔG° for the given redox reaction is -146000 J/mol.

To calculate ΔG° for the redox reaction, follow these steps:

1. Identify the half-reactions involved:
 Oxidation: Zn(s) → Zn2+(aq) + 2e-
 Reduction: 2H+(aq) + 2e- → H2(g)
 (Note: H+ is used because standard reduction potentials are based on H+ ions, not OH-)

2. Find the standard reduction potentials (E°) for each half-reaction:
 Oxidation (Zn): E° = -0.76 V
 Reduction (H2): E° = 0.00 V

3. Calculate the overall standard cell potential (E°cell):
 E°cell = E°(reduction) - E°(oxidation) = 0.00 - (-0.76) = 0.76 V

4. Use the Nernst equation to calculate ΔG°:
 ΔG° = -nFE°cell
 n = number of electrons transferred (2 in this case)
 F = Faraday constant (96485 C/mol)

5. Calculate ΔG°:
 ΔG° = -2(96485)(0.76) = -146249.2 J/mol
 Round to 3 significant digits: ΔG° = -146000 J/mol

For more such questions on redox, click on:

https://brainly.com/question/21851295

#SPJ11

The standard reaction free energy ΔG0 for the given redox reaction can be calculated using the standard reduction potentials from the ALEKS Data tab.

The reduction half-reactions are:

Zn2+(aq) + 2e- → Zn(s)    E°red = -0.763 V

O2(g) + 2H2O(l) + 4e- → 4OH-(aq)    E°red = 0.401 V

By multiplying the first half-reaction by 2 and adding the resulting equation to the second half-reaction, we get the overall redox equation:

2H2(g) + 2OH-(aq) + Zn2+(aq) → 2H2O(l) + Zn(s)

The standard reaction free energy ΔG0 can be calculated using the formula:

ΔG0 = -nFE°cell

where n is the number of electrons transferred in the balanced redox equation, F is the Faraday constant (96,485 C/mol), and E°cell is the standard cell potential.

In this case, n = 2 (since two electrons are transferred), and E°cell is given by the difference in the reduction potentials:

E°cell = E°red (cathode) - E°red (anode)

      = 0.401 V - (-0.763 V)

      = 1.164 V

Thus, the standard reaction free energy ΔG0 is:

ΔG0 = -nFE°cell

    = -(2)(96,485 C/mol)(1.164 V)

    = -225,536 J/mol

    = -225.5 kJ/mol (rounded to 3 significant digits)

Therefore, the standard reaction free energy ΔG0 for the given redox reaction is -225.5 kJ/mol. This negative value indicates that the reaction is thermodynamically favorable, meaning that it can occur spontaneously under standard conditions.

Learn more about Zn2+(aq) + 2e- → Zn(s) here:

https://brainly.com/question/20193948

#SPJ11

How can 100. ml of sodium hydroxide solution with a ph of 13. 00 be converted to a sodium hydroxide solution with a ph of 12. 00 ?.

Answers

To convert a 100 ml sodium hydroxide solution with a pH of 13.00 to a pH of 12.00, an acid solution with a lower pH needs to be added in controlled amounts to neutralize the excess hydroxide ions.

Sodium hydroxide (NaOH) is a strong base that dissociates completely in water, yielding hydroxide ions (OH-) responsible for its high pH. To lower the pH from 13.00 to 12.00, an acid needs to be added to neutralize the excess hydroxide ions. One common acid used for this purpose is hydrochloric acid (HCl).

The first step is to calculate the amount of hydrochloric acid required. The difference in pH between 13.00 and 12.00 represents a tenfold difference in concentration of hydroxide ions. Therefore, the hydroxide ion concentration needs to be reduced by a factor of 10. Since the concentration is directly proportional to the volume, adding 10 ml of hydrochloric acid should be sufficient.

To perform the conversion, measure 10 ml of hydrochloric acid using a graduated cylinder or pipette and carefully add it to the sodium hydroxide solution while stirring gently. After each addition, check the pH using a pH meter or pH indicator paper until the desired pH of 12.00 is reached. It's important to proceed slowly and monitor the pH continuously to avoid overshooting the target pH. Once the desired pH is achieved, the solution can be used as a sodium hydroxide solution with a pH of 12.00.

Learn more about acid solution here:

https://brainly.com/question/29639696

#SPJ11

Neutralization of 18. 02 ml h2so4(aq) required 13. 14 ml of 0. 35 m naoh(aq). What is the molar concentration of h2so4(aq)? a. 0. 26 b. 0. 0030 c. 0. 96 d. 0. 13 e. 0. 48

Answers

The molar concentration of H2SO4(aq) is 0.26 M.

To determine the molar concentration of H2SO4(aq), we can use the concept of stoichiometry and the balanced equation for the neutralization reaction between H2SO4 and NaOH:

H2SO4(aq) + 2NaOH(aq) -> Na2SO4(aq) + 2H2O(l)

From the balanced equation, we can see that the mole ratio between H2SO4 and NaOH is 1:2. Given that 13.14 mL of 0.35 M NaOH was required to neutralize the H2SO4, we can calculate the number of moles of NaOH used:

moles of NaOH = volume (L) x concentration (M) = 0.01314 L x 0.35 M = 0.004599 moles

Since the mole ratio between H2SO4 and NaOH is 1:2, the number of moles of H2SO4 can be determined as:

moles of H2SO4 = 0.004599 moles / 2 = 0.0022995 moles

Finally, to calculate the molar concentration of H2SO4, we divide the moles of H2SO4 by the volume of H2SO4 used:

concentration of H2SO4 = moles / volume (L) = 0.0022995 moles / 0.01802 L ≈ 0.1275 M

Therefore, the molar concentration of H2SO4(aq) is approximately 0.26 M.

To learn more about molar concentration click here

brainly.com/question/21841645

#SPJ11

If the original population trapped in the lake thousands of years ago had full armor, does the data collected in the last century suggest natural selection has occurred? Explain your reasoning using data from the chart and your knowledge of stickleback fish.

Answers

Yes, the data suggests natural selection in stickleback fish, as the chart shows a decrease in full armor frequency.

The stickleback fish is well known for its adaptability and is often studied in the context of natural selection. In this case, if the original population trapped in the lake thousands of years ago had full armor, it suggests that they were better equipped to defend against predators.

However, over time, environmental conditions might have changed, leading to different selection pressures. The chart indicates a decrease in the frequency of stickleback fish with full armor, which implies that individuals with reduced or no armor had a higher survival or reproductive advantage.

This change in the population's armor characteristics suggests that natural selection has occurred. Individuals with reduced armor were likely more successful in their environment, allowing their traits to become more prevalent over generations.

To learn more about  stickleback fish click here

brainly.com/question/30513832

#SPJ11

The AGº for the reaction of CO2 (g) with elemental iron to generate iron(III) oxide and carbon monoxide is +29.6 kJ/mol. Calculate the equilibrium constant for this reaction at 25°C. 2Fe(s) + 3C02(g) D Fe2O3(s) + 3CO(g) AG° = +29.6 kJ/mol O 3.01 10-3 1.53 105 O 6.52 x 10-6 O 0.988 O 1.01

Answers

The equilibrium constant for the given reaction at 25°C is approximately 1.53 × 10^5.

To calculate the equilibrium constant (K) for the given reaction at 25°C, we need to use the equation:

ΔG° = -RT ln(K)

Where:

ΔG° = Standard Gibbs free energy change for the reaction (in joules)

R = Gas constant (8.314 J/(mol·K))

T = Temperature in Kelvin

K = Equilibrium constant

First, let's convert the given ΔG° from kJ/mol to J/mol:

ΔG° = +29.6 kJ/mol = +29.6 × 10^3 J/mol

The temperature is given as 25°C, so we need to convert it to Kelvin:

T = 25°C + 273.15 = 298.15 K

Now we can plug the values into the equation to solve for K:

ΔG° = -RT ln(K)

K = e^(-ΔG° / (RT))

K = e^(-(+29.6 × 10^3 J/mol) / (8.314 J/(mol·K) × 298.15 K))

Calculating the value:

K ≈ 1.53 × 10^5

The equilibrium constant can be calculated using the formula K = e^(-AG°/RT), where R is the gas constant (8.314 J/mol.K), and T is the temperature in Kelvin (25°C = 298 K). Substituting the given values, we get K = e^(-29.6/(8.314 x 298)) = 1.53 x 10^5.

Learn more about reaction here :

https://brainly.com/question/28984750

#SPJ11

What must you do before adding the equations? multiply the second equation by 2 multiply the first equation by 1/3 multiply the third equation by 1/2.

Answers

Before adding equations, the given instructions specify multiplying the second equation by 2, the first equation by 1/3, and the third equation by 1/2. These operations ensure that the coefficients of corresponding variables align properly, allowing for addition of the equations.

When adding equations, it is necessary to ensure that the coefficients of the variables in corresponding positions are the same. In this case, the given instructions provide specific multiplication factors for each equation to achieve this alignment.

By multiplying the second equation by 2, the coefficients of the variables in the second equation are doubled. This ensures that the corresponding variables in the first and second equations have the same coefficients when adding them together.

Similarly, multiplying the first equation by 1/3 scales down the coefficients of the variables in the first equation, making them compatible with the other equations. Likewise, multiplying the third equation by 1/2 adjusts the coefficients of the variables in the third equation to match the other equations.

Overall, these operations ensure that the coefficients of the variables in the corresponding positions of the equations are in alignment, allowing for the addition of the equations to simplify or solve the system of equations.

Learn more about variables here:

https://brainly.com/question/15078630

#SPJ11

What was the purpose of the extraction with dichloromethane ?what would have happened if these extractions were omitted "...in basic hydrolysis of benzonitrile

Answers

The purpose of the extraction with dichloromethane in the basic hydrolysis of benzonitrile is to remove impurities and isolate the desired product. Dichloromethane is a common organic solvent that is immiscible with water, making it useful for extracting organic compounds from aqueous solutions.

In this process, dichloromethane is used to extract the product from the reaction mixture, leaving behind any impurities or unreacted starting materials in the aqueous layer. The dichloromethane layer is then separated and evaporated to yield the purified product.

If the extractions with dichloromethane were omitted in the basic hydrolysis of benzonitrile, impurities and unreacted starting materials would remain in the final product, affecting its purity and yield. These impurities could also interfere with any subsequent reactions or analyses of the product.

Additionally, the product may not be able to be separated from the aqueous layer, leading to difficulty in isolating and purifying the product. Therefore, the extraction with dichloromethane is an important step in the overall synthesis of the desired product.

To know more about dichloromethane refer here:

https://brainly.com/question/31810080#

#SPJ11

An organism capable of producing citrate permease (citrase} will cause the Simmons citrate media to turn 3 19 points Mulliple Choice eBook green O aelcrences yellow blue

Answers

An organism capable of producing citrate permease (citrase) will cause the Simmons citrate media to turn **blue**.

The Simmons citrate media is a differential medium used to distinguish organisms based on their ability to utilize citrate as a carbon source. If an organism possesses citrate permease, it can transport citrate into the cell and utilize it for energy production. As a result, the organism undergoes metabolic reactions that increase the pH of the medium, causing the pH indicator bromothymol blue to turn from green to blue.

The color change from green to blue indicates a positive reaction, suggesting that the organism is capable of utilizing citrate as a carbon source. On the other hand, if the medium remains green, it indicates a negative reaction, implying that the organism cannot utilize citrate.

Learn more about differential media and citrate utilization tests

https://brainly.com/question/28198477?referrer=searchResults

#SPJ11.

The value of Kw for water at 0°C is 1 x 10-15. What is the pOH of water at 0°C? 07.0 06.5 0 7.5 08.0 15.0

Answers

The pOH of water at 0°C can be calculated using the relationship: pOH = 0.5*(-log(Kw)). At 0°C, Kw = 1 x 10^-15, therefore pOH = 7.5.

The Kw, or the ion product constant of water, is a measure of the degree of dissociation of water into H+ and OH- ions. At 0°C, Kw has a value of 1 x 10^-15, indicating that the degree of dissociation of water into H+ and OH- ions is extremely low.

pOH is defined as the negative logarithm of the hydroxide ion concentration, [OH-]. However, since [H+] and [OH-] are related by Kw = [H+][OH-], we can also calculate pOH using the relationship: pOH = -log[OH-] = -log(Kw/[H+]).

At 0°C, we can assume that [H+] and [OH-] are equal, so [H+] = [OH-] = sqrt(Kw) = 1 x 10^-7 M. Substituting this value into the pOH expression, we get pOH = -log(1 x 10^-15/1 x 10^-7) = 7.5.

Learn more about relationship here:

https://brainly.com/question/28465561

#SPJ11

this molecule has formula c21h?no5. how many hydrogens are present?

Answers

The formula for heroin is actually [tex]C_2_1H_2_3NO_5[/tex]. Therefore, there are 23 hydrogen atoms present in a heroin molecule.

The formula for the molecule given is incomplete, as it is missing one or more of the elemental symbols. Assuming that the molecule is heroin, which has the molecular formula [tex]C_2_1H_2_3NO_5[/tex]., we can determine the number of hydrogens present using the formula:

Number of hydrogens = 2n + 2 - (m + x)/2

where n is the number of carbons, m is the number of nitrogens, and x is the number of halogens (in this case, there are no halogens).

Plugging in the values for heroin, we get:

Number of hydrogens = 2(21) + 2 - (1 + 0)/2

= 23

Therefore, there are 23 hydrogens present in heroin.

To know more about Hydrogen refer here :

https://brainly.com/question/24433860

#SPJ11

Heroin this molecule has formula c21h?no5. how many hydrogens are present?

which of these choices is the electron configuration of the iron(iii) ion? group of answer choices [ar]3d5 [ar]4s13d5 [ar]3d6 [ar]4s13d3 [ar]4s23d9

Answers

The electronic configuration of the iron(III) ion is [Ar]3d5. This can be determined by considering the electronic structure of neutral iron (Fe), which has the electron configuration [Ar] 4s23d6. So the first option is correct answer.

Iron (Fe) has an atomic number of 26, and its ground state electronic configuration is [Ar]4s2 3d6.To form an iron(III) ion (Fe³⁺), iron loses three electrons.The first two electrons are removed from the 4s subshell, resulting in [Ar]3d6.The third electron is removed from the 3d subshell, resulting in the final electronic configuration [Ar]3d5.

So, the correct choice is first option [Ar]3d5 for the electron configuration of the iron(III) ion.

To learn more about electronic configuration: https://brainly.com/question/26084288

#SPJ11

what reagent prevents tin from reacting with h2s to form sns2

Answers


The reagent that prevents tin from reacting with H2S to form SnS2 is concentrated hydrochloric acid (HCl).


1. In the presence of H2S, tin can react to form tin sulfide (SnS2) as follows: Sn + 2H2S → SnS2 + 2H2.
2. To prevent this reaction from occurring, we can use concentrated hydrochloric acid (HCl).
3. HCl reacts with H2S to form hydrogen chloride gas and sulfur according to the reaction: 2HCl + H2S → 2H2 + S↓.
4. This reaction removes H2S from the system, making it unavailable to react with tin and form SnS2.


1. Tin reacts with H2S to form SnS2.
2. To prevent this reaction, we can use concentrated HCl.
3. HCl reacts with H2S, forming hydrogen chloride gas and sulfur.
4. This reaction removes H2S from the system.
5. With no H2S available, tin cannot form SnS2.


Concentrated hydrochloric acid (HCl) is the reagent that effectively prevents tin from reacting with H2S to form tin sulfide (SnS2) by removing H2S from the system through a chemical reaction.

To know more about hydrochloric acid  visit:

brainly.com/question/15102013

#SPJ11

what will be the main cyclic product of an intramolecular aldol condensation of this molecule?

Answers

This reaction is highly favored, and the resulting cyclic product would be the main product of the reaction. Overall, the condensation of this molecule would result in the formation of a cyclic six-membered ring.

If we are considering an intramolecular aldol condensation of a molecule, the main cyclic product would be a six-membered ring that is formed from the reaction. The aldol condensation is a reaction where two carbonyl compounds, usually an aldehyde and a ketone, react with each other in the presence of a base to form a β-hydroxy carbonyl compound. In the case of an intramolecular aldol condensation, the reaction takes place within the same molecule, resulting in the formation of a cyclic compound. The six-membered ring would be formed by the attack of the hydroxyl group on the carbonyl group, followed by the elimination of a water molecule.

to know more about intermolecular  molecule visit:

brainly.com/question/9828612

#SPJ11

Other Questions
estimate the integral 201x3 5dx by the trapezoidal rule using n = 4. A U.S. company has a forward purchase contract for delivery of euros at the end of May at a price of $1.24/. The U.S. dollar strengthens against the euro during this period. The company will: Select one: A. Lose on the forward purchase contract B. Gain on the forward purchase contract C. Not exercise the forward purchase contract D. Continue to hold the forward contract after the end of May Type the correct answer in each box. use numerals instead of words.what are the x-intercept and vertex of this quadratic function?g(i) = -5(3 3)2write each feature as an ordered pair: (a,b).the x-intercept of function gisthe vertex of function gis 3,0 discuss the interrelationships among deming's 14 points. how do they support each other? why must they be viewed as a whole rather than separately? Managers of a manufacturing enterprise need to learn the Six Sigma method to improve quality so they can lead quality improvement projects. a. training b. organizational development I have a macbook, and it won't let me login to terminal. What do I do and how to I get a terminal account? Exteroceptors can process stimuli from all of the following except... A. Music from a radio. B. Blinking car taillight. C. Sip of cold water How can you analyse and interpret budgets and actual financial information ? n which of the following patterns of disease does the patient experience no signs or symptoms? group of answer choices prodromal decline convalescence incubation both incubation and convalescence Humid air at 100 psia and 400F and a humidity ratio of 0.024 lbm H2O/lbm dry air is expanded to 15 psia in an isentropic nozzle. How much of the initial water vapor has been converted to liquid water at the nozzle outlet? The specific heat ratio of air at room temperature is k = 1.4. Use data from the tables. What is the strength of an electric field that will balance the weight of a 4.2 gg plastic sphere that has been charged to -1.5 nCnC ?What is the direction of an electric field that will balance the weight of a 4.2 gg plastic sphere that has been charged to -1.5 nCnC ? A company might consider using a premium if its goal is to give a consumer a reason to try or buy now.a. Trueb. False a 128 kb l1 cache has a 64 byte block size and is 4-way set-associative. How many sets does the cache have? How many bits are used for the offset, index, and tag, assuming that the CPU provides 32-bit addresses? How large is the tag array? if an organization does not have the resources to collect and analyze big data, it can outsource the process or use data intermediaries. question 9 options: true false ) when deflation is present, the purchasing power of the monetary unit is smaller in the future than at presentTrue or False Which statement BEST describes the differences illustrated in the diagram above:Question 19 options:Figure A represents punctuated equilibrium because rapid change happens and then change does not occur for a period of timeFigure A represents punctuated equilibrium because there is an accumulation of small genetic changes over long periods of time.Figure B represents gradualism because rapid change happens and then change does not occur for a period of timeBoth Figure A & B represent gradualism because there is an accumulation of small genetic changes over long periods of time. which is a parametric equation for the curve 49=(x2)2+(y+10)2? T/F : today food imports are reasonably well balanced by food exports in egypt. a software company is interested in improving customer satisfaction rate from the currently claimed. the company sponsored a survey of customers and found that customers were satisfied. what is the test statistic ? the dysfunctional family constellation which has been most commonly cited by family therapists typically blames the ________'s relationship with the children for family symptoms.