The alcohol in "gasohol" burns according to the following equation: C2H6O + 3 O2 → 2 CO2 + 3H2O. In a test, 60. 89 moles of water is collected from this reaction. How many moles of CO2 also formed?

Answers

Answer 1

Therefore, approximately 40.59 moles of CO2 were also formed in the given test where 60.89 moles of water were collected from the reaction of the alcohol in "gasohol."

According to the balanced equation, the stoichiometry shows that for every 1 mole of C2H6O, 2 moles of CO2 are formed. Therefore, we can use this ratio to determine the moles of CO2 formed when 60.89 moles of water are collected.

Since 3 moles of water are produced for every 2 moles of CO2, we can set up a proportion using the collected moles of water and the corresponding moles of CO2:

3 moles H2O / 2 moles CO2 = 60.89 moles H2O / x moles CO2

Solving for x, we find:

x = (2 moles CO2 * 60.89 moles H2O) / 3 moles H2O

x ≈ 40.59 moles CO2

Therefore, approximately 40.59 moles of CO2 were also formed in the given test where 60.89 moles of water were collected from the reaction of the alcohol in "gasohol."

To learn more about  stoichiometry click here, brainly.com/question/28780091

#SPJ11


Related Questions

21.3 draw the two possible enols that can be formed from 3-methyl-2-butanone and show a mechanism of formation of each under base-catalyzed conditions.

Answers

The two possible enols that can be formed from 3-methyl-2-butanone are the alpha-enol and the beta-enol. The mechanism of formation of each enol involves deprotonation of a specific carbon atom by the base, followed by protonation of the oxygen atom by the acidic solvent.

To draw the two possible enols that can be formed from 3-methyl-2-butanone, we first need to understand the structure of the molecule. 3-methyl-2-butanone is a ketone with a methyl group and a carbonyl group attached to a four-carbon chain. When this molecule is treated with a base, such as sodium hydroxide, it can undergo an acid-base reaction that results in the formation of an enolate ion. The enolate ion can then tautomerize to form an enol.

The first possible enol that can be formed from 3-methyl-2-butanone is the alpha-enol. In this enol, the double bond is located between the carbonyl carbon and the alpha-carbon, which is the carbon directly adjacent to the carbonyl carbon. The mechanism of formation of the alpha-enol involves deprotonation of the alpha-carbon by the base, followed by protonation of the oxygen atom by the acidic solvent. This is shown in the following mechanism:



The second possible enol that can be formed from 3-methyl-2-butanone is the beta-enol. In this enol, the double bond is located between the alpha-carbon and the beta-carbon, which is the carbon two carbons away from the carbonyl carbon. The mechanism of formation of the beta-enol involves deprotonation of the beta-carbon by the base, followed by protonation of the oxygen atom by the acidic solvent. This is shown in the following mechanism:


In summary, the two possible enols that can be formed from 3-methyl-2-butanone are the alpha-enol and the beta-enol. The mechanism of formation of each enol involves deprotonation of a specific carbon atom by the base, followed by protonation of the oxygen atom by the acidic solvent.

To know more about enols click here:

https://brainly.com/question/4476334

#SPJ11

Consider an experiment where 5.81 mL of an unknown H2O2(aq) solution reacted with the yeast at 26.3°C to produce 74.67 mL of gas. The barometric pressure was 751.4 torr. The vapor pressure of H2O is 25.2 torr at that temperature. 2 H2O2(aq) + O2(g) + 2 H20(1) Conversion factors and constants: R = 0.0821 L.atm/K-mol; 760 torr = 1 atm 273.15 + °C = Kelvin Be sure to look at the units of the numbers when selecting your answers. What is the partial pressure of Oz (in atm) in the collected gas? 0.9555 atm 02 How many moles of Oz were produced by the reaction? 0.002904 mol O2 4 How many moles of HQ, reacted to produce this amount of O2? 0.005808 mol H202 What is the Molarity of the H2O2 solution? 0.9887 atm 02

Answers

To find the partial pressure of O2, we need to calculate the total pressure of the gas collected and subtract the vapor pressure of H2O at that temperature, So the molarity of the H2O2 solution is 0.2494 M.

Total pressure = barometric pressure - vapor pressure of H2O = (751.4 torr - 25.2 torr) = 726.2 torr

Converting to atm: 726.2 torr ÷ 760 torr/atm = 0.9555 atm

So the partial pressure of O2 in the collected gas is 0.9555 atm.

To find the moles of O2 produced by the reaction, we need to use the ideal gas law:

PV = nRT

where P is the partial pressure of O2, V is the volume of the gas collected (converted to L), n is the number of moles of O2, R is the ideal gas constant, and T is the temperature in Kelvin.

Converting the given values to the appropriate units and plugging in, we get:

(0.9555 atm)(0.07467 L) = n(0.0821 L.atm/K.mol)(299.45 K)

Solving for n, we get:

n = 0.002904 mol O2

So 0.002904 moles of O2 were produced by the reaction.

Since the stoichiometry of the reaction is 2 H2O2 : 1 O2, the moles of H2O2 that reacted is half that amount:

0.002904 mol O2 ÷ 2 = 0.001452 mol H2O2

So 0.001452 moles of H2O2 reacted to produce this amount of O2.

To find the molarity of the H2O2 solution, we need to use the definition of molarity:

Molarity = moles of solute ÷ liters of solution

The given volume of H2O2 solution is 5.81 mL, or 0.00581 L. The number of moles of H2O2 is 0.001452 mol. Plugging in, we get:

Molarity = 0.001452 mol ÷ 0.00581 L = 0.2494 M (rounded to four significant figures)

So the molarity of the H2O2 solution is 0.2494 M.

To know more about partial pressure click here:

https://brainly.com/question/30114830#

#SPJ11

what is the standard electrode potential for the reaction 2 cr 3 pb²⁺ → 3 pb 2 cr³⁺?

Answers

The standard electrode potential for the given reaction is 0.618 V. The standard electrode potential for the given reaction can be calculated using the standard electrode potentials of the half-reactions involved.

The half-reactions are:

Cr₃+ + 3e- → Cr (E° = -0.744 V)

Pb₂+ + 2e- → Pb (E° = -0.126 V)

To obtain the overall reaction, we multiply the first half-reaction by 2 and the second half-reaction by 3, and then add them together. This gives:

2Cr₃+ + 6e- + 3Pb₂+ + 6e- → 2Cr + 3Pb

Simplifying this, we get:

2Cr₃+ + 3Pb₂+ → 2Cr + 3Pb₂+ + 6e-

The standard electrode potential for the overall reaction can be calculated using the Nernst equation:

E°cell = E°cathode - E°anode

E°cell = E°Pb - E°Cr

E°cell = (-0.126 V) - (-0.744 V)

E°cell = 0.618 V

Learn more about electrode: https://brainly.com/question/17060277

#SPJ11

which of the following processes describes the collection and condensation of a vapor produced by heating an alcohol-containing liquid?

Answers

The process that describes the collection and condensation of a vapor produced by heating an alcohol-containing liquid is known as distillation.

Distillation is a common separation technique used to separate a mixture of liquids based on their differences in boiling points. In the context of an alcohol-containing liquid, when the mixture is heated, the alcohol vaporizes at a lower temperature compared to other components of the mixture. The vapor is then collected and passed through a condenser, where it is cooled and condensed back into a liquid form. The condensation of the alcohol vapor allows for its separation and purification from other substances present in the original liquid mixture. Distillation is widely used in various industries, such as the production of alcoholic beverages, the purification of solvents, and the creation of essential oils, among other applications.

Learn more about Distillation here:

https://brainly.com/question/31829945

#SPJ11

i have added 15 l of air to a balloon at sea level (1.0 atm). if i take the balloon with me to denver, where the air pressure is 0.85 atm, what will the new volume of the balloon be at the same temperature?

Answers

The new volume of the ballon at the same temperature is 17.65litres.

What is Boyles Law?

Boyles Law states that the product of pressure and volume is constant until the temperature remains constant.

PV = constant defines the Boyles law.

As given,

V₁ = 15L, P₁ = 1.0atm, P₂= 0.85atm

P₁V₁ = P₂V₂

Substitute values respectively,

1 × 15 = 0.85 × V₂

    V₂ = 15/0.85

     V₂ = 17.65L

Hence, the new volume of the balloon at the same temperature is 17.65L.

To learn more about The Boyles law from the given link.

https://brainly.com/question/1696010

#SPJ4

A Draw chiral molecules that meet the following descriptions: (a) A chloroalkane, $\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{Cl}$ (b) An alcohol, $\mathrm{C}_{6} \mathrm{H}…
A Draw chiral molecules that meet the following descriptions:
(a) A chloroalkane, $\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{Cl}$
(b) An alcohol, $\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{O}$
(c) An alkene, $C_{6} \mathrm{H}_{12}$
(d) An alkane, $\mathrm{C}_{8} \mathrm{H}_{18}$

Answers

(a) One example of a chiral chloroalkane with the formula $\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{Cl}$ is 2-chloropentane, which has a chiral carbon atom (marked with an asterisk):

$\mathrm{CH}_{3}-\mathrm{CH}^{*}(\mathrm{Cl})-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$

(b) One example of a chiral alcohol with the formula $\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{O}$ is (S)-2-butanol, which has a chiral carbon atom (marked with an asterisk):

$\mathrm{CH}_{3}-\mathrm{CH}^{*}(\mathrm{OH})-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$

(c) One example of a chiral alkene with the formula $C_{6} \mathrm{H}_{12}$ is (Z)-3-hexene, which has a double bond between the second and third carbon atoms (marked with a double bond symbol) and a chiral carbon atom (marked with an asterisk):

$\mathrm{CH}_{3}-\mathrm{CH}= \mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CH}_{2}^{*}-\mathrm{CH}_{3}$

(d) An alkane is not a chiral molecule because it does not contain any chiral carbon atoms. One example of an alkane with the formula $\mathrm{C}_{8} \mathrm{H}_{18}$ is octane:

$\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$

learn more  about chiral carbon atom

https://brainly.in/question/231371?referrer=searchResults

#SPJ11

silver acetate, agc2h3o2, has ksp =2.3x10-3. does a precipitate form when 0.015 mol of agno3 and 0.25 mol of ca(c2h3o2)2 are dissolved in a total volume of 1.00 l of solution?

Answers

Yes, a precipitate of silver acetate will form because the calculated ion product, Qsp, is greater than the solubility product, Ksp. Qsp = [Ag+][C2H3O2-]^2 = (0.015 mol/L)(0.25 mol/L)^2 = 0.0094 > 2.3x10^-3.

To determine if a precipitate will form, we need to compare the ion product, Qsp, with the solubility product, Ksp. If Qsp is greater than Ksp, then a precipitate will form.

The balanced chemical equation for the reaction between silver nitrate (AgNO3) and calcium acetate (Ca(C2H3O2)2) is:

2AgNO3 + Ca(C2H3O2)2 → 2AgC2H3O2 + Ca(NO3)2

From the equation, we can see that 2 moles of silver acetate are produced for every 2 moles of silver nitrate. Therefore, the concentration of Ag+ in solution will be 0.015 mol/L.

Similarly, from the equation, we can see that 1 mole of calcium acetate produces 2 moles of acetate ions (C2H3O2-). Therefore, the concentration of C2H3O2- in solution will be 0.25 mol/L.

Using these concentrations, we can calculate Qsp:

Qsp = [Ag+][C2H3O2-]^2 = (0.015 mol/L)(0.25 mol/L)^2 = 0.0094

Since Qsp is greater than Ksp (2.3x10^-3), a precipitate of silver acetate will form.

Learn more about precipitate here:

https://brainly.com/question/31046678

#SPJ11

A gas has an initial volume of 168 cm3 at a temperature of 255 K and a pressure of 1. 6 atm. The pressure of the gas decreases to 1. 3 atm, and the temperature of the gas increases to 285 K. What is the final volume of the gas? 122 cm3 153 cm3 185 cm3 231 cm3.

Answers

The final volume of the gas is 231 cm3.

To solve this problem, we can use the combined gas law, which relates the initial and final conditions of pressure, volume, and temperature. The combined gas law is given by the equation:

(P1 * V1) / (T1) = (P2 * V2) / (T2)

where P1 and P2 are the initial and final pressures, V1 and V2 are the initial and final volumes, and T1 and T2 are the initial and final temperatures.

Given:

P1 = 1.6 atm

V1 = 168 cm3

T1 = 255 K

P2 = 1.3 atm

T2 = 285 K

We need to find V2, the final volume of the gas.

Substituting the given values into the combined gas law equation, we get:

(1.6 atm * 168 cm3) / (255 K) = (1.3 atm * V2) / (285 K)

Simplifying the equation, we find:

V2 = (1.6 atm * 168 cm3 * 285 K) / (1.3 atm * 255 K)

V2 ≈ 231 cm3

Therefore, the final volume of the gas is approximately 231 cm3.

Learn more about combined gas law here:

https://brainly.com/question/30458409

#SPJ11

what is the coefficient for oh−(aq) when so32−(aq) mno4−(aq) → so42−(aq) mn2 (aq) is balanced in basic aqueous solution?

Answers

The coefficients for each molecule in the balanced equation are:

C₈H₁₈O₇: 2

NH₄NO₃: 2

C₈H₁₈O₇N:: 1

NH₄Cl: 1  

In a basic aqueous solution, the overall reaction is neutralization, which means that the number of H+ ions is equal to the number of OH- ions. Therefore, the coefficient for OH- is 1.

When the balanced equation is written as:

SO3²⁻ + 2MnO₄²⁻  → SO₄²⁻ + 2Mn²⁺

The coefficient for SO₄²⁻ is 2, since there are two moles of  SO₄²⁻  for every two moles of MnO₄²⁻ that are consumed in the reaction.

The coefficient for Mn²⁺ is 2, since there are two moles of Mn²⁺+ for every two moles of MnO₄²⁻ that are consumed in the reaction.

Therefore, the overall reaction can be written as:

2SO₃²⁻ + 2MnO₄²⁻ → 2 SO₄²⁻ + 2Mn²⁺

The balanced equation with the smallest whole numbers is:

2C₈H₁₈O₇: + 2NH₄NO₃ → 2C₈H₁₈O₇N + 2NH₄Cl

The coefficients for each molecule in the balanced equation are:

C₈H₁₈O₇: 2

NH₄NO₃: 2

C₈H₁₈O₇N: 1

NH₄Cl: 1

Therefore, the coefficients for each molecule in the balanced equation are:

C₈H₁₈O₇: 2

NH₄NO₃: 2

C₈H₁₈O₇N: 1

NH₄Cl: 1

The coefficients for each molecule in the balanced equation are:

C₈H₁₈O₇: 2

NH₄NO₃: 2

C₈H₁₈O₇N:: 1

NH₄Cl: 1  

Learn more about molecule

https://brainly.com/question/14362857

#SPJ4

Question Which of the following diseases causes over 1 million deaths per year in third world countries, is featured in the novel Crime and Punishment and the video game Samurai Shodown, and can be treated using amide-containing medicines?

Answers

Tuberculosis is the disease that causes over 1 million deaths per year in third-world countries, is featured in the novel Crime and Punishment, and the video game Samurai Shodown. It can be treated using amide-containing medicines.

Tuberculosis (TB) is a contagious bacterial infection caused by Mycobacterium tuberculosis. It primarily affects the lungs, but it can also infect other organs in the body. The disease is spread through the air when an infected person coughs, sneezes, or talks. In third-world countries, TB is a significant public health issue due to limited access to healthcare, diagnostics, and proper treatments.

In literature and media, TB has been portrayed in various works, such as Fyodor Dostoevsky's novel Crime and Punishment and the video game Samurai Shodown, highlighting the historical impact of the disease. To treat TB, a combination of amide-containing medicines, such as isoniazid and ethionamide, is usually prescribed as part of a multi-drug regimen. These medications target the bacteria and help the patient recover, provided the full course of treatment is followed.

Know more about Tuberculosis here:

https://brainly.com/question/14816227

#SPJ11

a solution contains 0.434 m potassium acetate and 6.84×10-2 m acetic acid.

Answers

The given solution contains 0.434 m potassium acetate and 6.84×10⁻² m acetic acid. This is using molality.

In the given solution, the concentration of potassium acetate is 0.434 m. This means that for every liter of solution, there are 0.434 moles of potassium acetate. Similarly, the concentration of acetic acid is 6.84×10⁻² m, which means that for every liter of solution, there are 6.84×10⁻² moles of acetic acid.

The given solution has a higher concentration of potassium acetate compared to acetic acid. This could have implications in various chemical reactions and processes where the balance of these two compounds is important.

To know more about molality, visit:

https://brainly.com/question/26921570

#SPJ11

virginia builds a galvanic cell using a zinc electrode immersed in an aqueous zn(no3)2 solution and silver electrode immersed in a agno3 solution at 298 k. which species is produced at the cathode?

Answers

The species produced at the cathode is silver.

How to determine the species produced at the cathode?

In a galvanic cell, the species produced at the cathode depends on the identity of the metal electrode and the electrolyte solution it is immersed in.

In Virginia's case, she used a silver electrode immersed in an AgNO₃ solution as the cathode.When the cell is connected and the redox reaction occurs, the silver electrode serves as the site for reduction, and Ag+ ions in the electrolyte solution will be reduced to solid silver (Ag) and deposited onto the electrode.

Therefore, the species produced at the cathode is solid silver (Ag). This reduction reaction is driven by the flow of electrons from the zinc electrode to the silver electrode through the external circuit, generating an electric current.

Learn more about species

brainly.com/question/13259455

#SPJ11

24.9 draw the cyclic hemiacetal that is formed when each of the following bifunctional compounds is treated with aqueous acid

Answers

Bifunctional compounds with a molecular weight of 24.9, but without more information, it is challenging to determine the exact compound you are referring to. Bifunctional compounds is treated with aqueous acid. A cyclic hemiacetal is a molecule that contains both an alcohol functional group (-OH) and a carbonyl functional group (C=O) within the same molecule. When these two functional groups react, they can form a cyclic hemiacetal.



Now, we can apply this knowledge to the compounds given in the question. I'll walk you through the process of drawing the cyclic hemiacetal for each compound. 1. Compound 1: This compound has two functional groups, an alcohol (-OH) and an aldehyde (C=O). When treated with aqueous acid, the aldehyde group will react with the alcohol group to form a cyclic hemiacetal. The resulting molecule will have a six-membered ring, with an oxygen atom in the ring. The oxygen atom will be bonded to the carbon atom in the aldehyde group, and to the carbon atom in the alcohol group.  2. Compound 2: This compound has two functional groups, an alcohol (-OH) and a ketone (C=O). When treated with aqueous acid, the ketone group will react with the alcohol group to form a cyclic hemiacetal. The resulting molecule will have a five-membered ring, with an oxygen atom in the ring.

To know more about molecular visit :-

https://brainly.com/question/13556931

#SPJ11


Write a balanced equation for the reaction which occurs with the CaCl2 solution and the soap (a fatty acid salt).

Answers

Calcium chloride reacts with the fatty acid salt to form a calcium soap (Ca(RCOO)2) precipitate and the corresponding metal chloride (M+Cl-).

When CaCl2 (calcium chloride) reacts with a soap, which is typically a sodium or potassium salt of a fatty acid, the reaction results in the formation of a precipitate called calcium soap.

Let's represent the fatty acid salt as RCOO- M+ (where R is the hydrocarbon chain, M+ is the metal cation like Na+ or K+).

The balanced equation for this reaction is:

CaCl2 (aq) + 2 RCOO- M+ (aq) → Ca(RCOO)2 (s) + 2 M+Cl- (aq)

In this equation, calcium chloride reacts with the fatty acid salt to form a calcium soap (Ca(RCOO)2) precipitate and the corresponding metal chloride (M+Cl-).

To learn more about equation, refer below:

https://brainly.com/question/29657983

#SPJ11

1. 8 L of a 2. 4M solution of NiCl2 is diluted to 4,5 L. What is the resulting concentration of the diluted solution?

Answers

When 1.8 L of a 2.4 M solution of NiCl2 is diluted to 4.5 L, the resulting concentration of the diluted solution can be calculated by using the formula: (initial concentration) x (initial volume) = (final concentration) x (final volume). The resulting concentration of the diluted solution is approximately 0.96 M.

To find the resulting concentration of the diluted solution, we can use the formula for dilution:

(initial concentration) x (initial volume) = (final concentration) x (final volume)

Given:

Initial concentration = 2.4 M

Initial volume = 1.8 L

Final volume = 4.5 L

Substituting the values into the formula, we have:

(2.4 M) x (1.8 L) = (final concentration) x (4.5 L)

Simplifying the equation, we solve for the final concentration:

(final concentration) = (2.4 M) x (1.8 L) / (4.5 L)

(final concentration) ≈ 0.96 M

Therefore, the resulting concentration of the diluted solution is approximately 0.96 M. This means that the concentration of NiCl2 in the solution has been reduced after dilution to a value lower than the initial concentration of 2.4 M.

Learn more about diluted solution here:

https://brainly.com/question/15467084

#SPJ11

Choose your best photograph focusing on Line. Tell why this photo focuses on line. Write about directional and implied line. Discuss dynamics based on where the line leads the viewer's eye. Write at least 3 sentences about line.

Answers

A directional line in art is an art line that guides the viewer's gaze around the work of art. An implied line is a line that is implied by a change in color, tone, texture, or the edges of a shape.

A directional line can be a vertical line, a horizontal line, a diagonal line, or a curved line. A directional line can guide the viewer's gaze to an object within the work of art or give the work of art a sense of movement.

As the name implies, implied lines are not the actual lines that are projected onto a photograph. Instead, implied lines are visual cues that photographers use to help them compose their images.

To learn more about art, refer to the link:

https://brainly.com/question/19049629

#SPJ1

PLEASE HELP ANSWER QUICK 55 POINTS RIGHT ANSWERS ONLY :)

Answers

Using the formula they gave us:

BP solution = BP benzene + change in temperature (we found before to be 5.3)

So substituting the values:

BP solution = 80.1 + 5.3

= 85.4°C

Answer:

The answer is 85.4°C

Explanation:

Bp=80.1°C

◇Tb=5.3°C

Bp solution=BP beneze +◇Tb

BP=80.1+5.3

BP=85.4°C

Could another liquid be used just as effectovely as water in callolimeter?

Answers

In a calorimeter, the substance being studied is usually mixed with water, which acts as a solvent and a heat sink.

Water is commonly used because of its high specific heat capacity, which means that it can absorb a relatively large amount of heat energy without changing temperature too much. This property makes water an effective medium for measuring heat changes.

While water is the most commonly used liquid in calorimetry experiments, other liquids with high specific heat capacity and low reactivity could be used as well. However, the choice of liquid would depend on the specific application and the substance being studied. For example, if the substance being studied is highly reactive with water, another solvent may be necessary. Additionally, the cost and availability of the solvent may be important factors to consider.

It is also worth noting that the type of calorimeter used may need to be adjusted if a different liquid is used. For example, if a liquid with a lower specific heat capacity is used, a different type of calorimeter may be needed to compensate for the lower heat capacity of the solvent. Therefore, it is important to carefully consider the properties of the liquid being used and the requirements of the experiment when choosing a solvent for a calorimetry experiment.

Know more about calorimeter here https://brainly.com/question/4802333#

#SPJ11

Drag the correct steps into order to solve the equation −6x+18=−6 for x

Answers

To solve the equation -6x + 18 = -6 for x, you need to perform a series of steps in the correct order.

To solve the equation -6x + 18 = -6 for x, you need to isolate the variable x on one side of the equation. Here are the steps in the correct order:

1. Subtract 18 from both sides of the equation: -6x = -6 - 18.

2. Simplify the right side: -6x = -24.

3. Divide both sides of the equation by -6 to solve for x: x = (-24) / (-6).

4. Simplify the division: x = 4.

By following these steps, you isolate the variable x and find its value, which is 4.

To learn more about series, click here:

brainly.com/question/25277900

#SPJ11

A hydrogen atom has energy E= -0.85 eV. The atom's radius in term of Bohr radius ( ab) is A. a8/16 B. 8 ab c. 16 ав D.4 ab E. ab/4

Answers

The atom's radius in terms of Bohr radius is (C) 16ab.

To solve this, we need to use the formula for the energy of a hydrogen atom, which is given by:

E = -13.6 eV/n²
where n is the principal quantum number.

The energy of the hydrogen atom is E = -0.85 eV, so we can set this equal to the formula and solve for n:
-0.85 eV = -13.6 eV/n²
n² = 13.6 eV/0.85 eV
n² = 16
n = 4
So, the principal quantum number of the hydrogen atom is n = 4.

We can now use the formula for the radius of the hydrogen atom in terms of the Bohr radius (ab), which is given by:
r = n² ab

Plugging in n = 4, we get:
r = 4² ab
r = 16 ab

Therefore, the radius of the hydrogen atom in terms of the Bohr radius is 16ab, which corresponds to answer choice (C).

To know more about the Bohr radius, refer here:

https://brainly.com/question/31131977#

#SPJ11

9. express the equilibrium constant for the reaction: 16ch3cl(g) 8cl2(g) ⇌ 16ch2cl2(g) 8h2(g)

Answers

The equilibrium constant for the given reaction can be expressed as Kc = ([CH2Cl2]^16 [H2]^8)/([CH3Cl]^16 [Cl2]^8), where [ ] represents the molar concentration of the respective species at equilibrium.

To express the equilibrium constant for the reaction 16CH3Cl(g) + 8Cl2(g) ⇌ 16CH2Cl2(g) + 8H2(g), we will use the terms equilibrium constant (K) and equilibrium expression.

The equilibrium constant (K) is a value that describes the ratio of the concentrations of products to reactants when a chemical reaction is at equilibrium. The equilibrium expression is written as:

K = [Products]^coefficients / [Reactants]^coefficients

For the given reaction:

16CH3Cl(g) + 8Cl2(g) ⇌ 16CH2Cl2(g) + 8H2(g)

The equilibrium expression will be:

K = [CH2Cl2]¹⁶ * [H2]⁸ / [CH3Cl]¹⁶ * [Cl2]⁸

This is the equilibrium constant expression for the given reaction, with the concentrations of each species raised to the power of their respective stoichiometric coefficients.

Learn more about equilibrium reactions here,

https://brainly.com/question/18849238

#SPJ11

Which of the following involves a disproportionation reaction?
a) dry cell battery
b) Mercury battery
c) lead storage battery
d) lithium-ion battery

Answers

A disproportionation reaction is a type of redox reaction where a single substance is both oxidized and reduced, resulting in the formation of two different compounds. In a lead storage battery, lead oxide and lead sulfate are used as positive and negative electrodes, respectively.

During charging, the lead sulfate at the negative electrode is reduced to lead, while the lead oxide at the positive electrode is oxidized to lead dioxide. This process is a disproportionation reaction since lead is both oxidized and reduced during the charging process. Dry cell batteries, mercury batteries, and lithium-ion batteries do not involve disproportionation reactions. In a dry cell battery, the anode is made of zinc and the cathode is made of manganese dioxide, with an electrolyte paste in between. The reaction involves the oxidation of zinc at the anode and the reduction of manganese dioxide at the cathode. In a mercury battery, the anode is made of zinc amalgam and the cathode is made of mercury oxide, with an electrolyte of potassium hydroxide. The reaction involves the oxidation of zinc amalgam at the anode and the reduction of mercury oxide at the cathode. In a lithium-ion battery, lithium ions move from the anode to the cathode during discharge, and from the cathode to the anode during charging. This is not a disproportionation reaction as lithium ions are not being both oxidized and reduced.

Learn more about disproportionation reaction here ;


https://brainly.com/question/14605690

#SPJ11

Ethanol is produced from ethylene via the gas-phase reaction C2H4(8) + H2O(g) → C2H5OH() Reaction conditions are 400 K and 2 bar. (a) Determine a numerical value for the equilibrium constant K for this reaction at 298.15 K. (b) Determine a numerical value for K for this reaction at 400 K. (c) Determine the composition of the equilibrium gas mixture for an equimolar feed containing only ethylene and H2O. State all assumptions. (d) For the same feed as in part (c), but for P= 1 bar, would the equilibrium mole fraction of ethanol be higher or lower? Explain.

Answers

The equilibrium constant can be calculated using the standard Gibbs free energy change, while the composition of the equilibrium gas mixture can be determined by considering stoichiometry.

How can the equilibrium constant and composition of the equilibrium gas mixture be determined?

(a) To determine the numerical value of the equilibrium constant K at 298.15 K, we need the standard Gibbs free energy change (ΔG°) for the reaction. Using ΔG° = -RT ln K, where R is the gas constant, T is the temperature in Kelvin, and ln denotes the natural logarithm, we can calculate K.

(b) Similarly, for the temperature of 400 K, we can calculate the new value of K using the same formula.

(c) Assuming the reaction is ideal and obeys the ideal gas law, the equilibrium composition can be determined by comparing the stoichiometry of the reaction. We assume complete conversion of ethylene and water to ethanol.

(d) At a lower pressure of 1 bar, Le Chatelier's principle predicts that the equilibrium will shift towards the side with a higher number of moles, which in this case is the reactant side. Thus, the equilibrium mole fraction of ethanol would be lower.

Learn more about equilibrium constant

brainly.com/question/28559466

#SPJ11

recalculate the percent dissociation of 0.19 m hn3 in the presence of 0.19 m hcl.

Answers

The percent dissociation of 0.19 M HNO[tex]_3[/tex] in the presence of 0.19 M HCl is approximately 100.2%.

To calculate the percent dissociation of 0.19 M HNO[tex]_3[/tex]  in the presence of 0.19 M HCl, we need to consider the common ion effect, which will shift the equilibrium to the left and decrease the concentration of [tex]H_3O^+[/tex] at equilibrium.

Let's start by calculating the concentration of [tex]H_3O^+[/tex] at equilibrium using the equilibrium constant expression and the initial concentration of HNO[tex]_3[/tex]:

Ka = [[tex]H_3O^+[/tex]][[tex]NO_3^-[/tex]]/[HNO[tex]_3[/tex] ]

At equilibrium, the concentration of [tex]NO_3^-[/tex] is equal to the concentration of HNO3 that has dissociated, which we can assume to be x. Therefore:

Ka = [[tex]H_3O^+[/tex]][x]/[0.19 - x]

We also know that HCl completely dissociates in water to give [tex]H_3O^+[/tex] and [tex]Cl^-[/tex]. Therefore, the concentration of [tex]H_3O^+[/tex] contributed by HCl is equal to 0.19 M.

The total concentration of [tex]H_3O^+[/tex] at equilibrium is therefore:

[[tex]H_3O^+[/tex]] = [[tex]H_3O^+[/tex]] from HNO[tex]_3[/tex]  dissociation + [[tex]H_3O^+[/tex]] from HCl dissociation

[[tex]H_3O^+[/tex]] = x + 0.19

Substituting this into the equilibrium constant expression and solving for x:

Ka = [[tex]H_3O^+[/tex]][x]/[0.19 - x]

1.0 x [tex]10^{-7}[/tex] = (x + 0.19)x/(0.19 - x)

Using the quadratic formula: x = 4.08 x [tex]10^{-4}[/tex] M

Therefore, the concentration of [tex]H_3O^+[/tex] at equilibrium is:

[[tex]H_3O^+[/tex]] = x + 0.19 = 0.1904 M

The percent dissociation of HNO[tex]_3[/tex]  in the presence of 0.19 M HCl is:

% dissociation = ([[tex]H_3O^+[/tex]] at equilibrium / initial concentration of HNO[tex]_3[/tex] ) * 100%

% dissociation = (0.1904 M / 0.19 M) * 100%

% dissociation = 100.2%

Therefore the percent dissociation of 0.19 M HNO[tex]_3[/tex] in the presence of 0.19 M HCl is 100.2%.

To learn more about equilibrium constant:

https://brainly.com/question/31321186

#SPJ11

A solution contains 3.05 mol of water and 1.50 mol of nonvolatile glucose (C6H12O6). What is the mole fraction of water in this solution? What is the vapor pressure of the solution at 25 Celsius, given that the vapor pressure of pure water at 25 Celsius is 23.8 torr?A. X=B. = torr

Answers

Your answer: A. X ≈ 0.6703, B. ≈ 15.95 torr

A. To find the mole fraction of water in the solution, we need to first find the total moles of the solution:

Total moles = moles of water + moles of glucose
Total moles = 3.05 mol + 1.50 mol
Total moles = 4.55 mol

Then, we can calculate the mole fraction of water as:

Mole fraction of water = moles of water / total moles
Mole fraction of water = 3.05 mol / 4.55 mol
Mole fraction of water = 0.670

Therefore, the mole fraction of water in this solution is 0.670.

B. To find the vapor pressure of the solution at 25 Celsius, we can use Raoult's law:

Psolution = Xwater * Pwater

where Psolution is the vapor pressure of the solution, Xwater is the mole fraction of water, and Pwater is the vapor pressure of pure water at the same temperature.

Plugging in the values we know, we get:

Psolution = 0.670 * 23.8 torr
Psolution = 15.98 torr

Therefore, the vapor pressure of the solution at 25 Celsius is 15.98 torr.
Hi! To answer your question, we first need to calculate the mole fraction of water in the solution:

Mole fraction of water (X) = moles of water / (moles of water + moles of glucose)
X = 3.05 mol / (3.05 mol + 1.50 mol) = 3.05 / 4.55 ≈ 0.6703

Next, we'll use Raoult's law to find the vapor pressure of the solution:
Vapor pressure of solution (B) = mole fraction of water × vapor pressure of pure water
B = 0.6703 × 23.8 torr ≈ 15.95 torr

Your answer: A. X ≈ 0.6703, B. ≈ 15.95 torr

To know more about torr visit:-

https://brainly.com/question/30515782

#SPJ11

identify the correct balanced equation for the combustion of pentene (c5h10) ( c 5 h 10 )

Answers

The balanced equation for the combustion of pentene ([tex]C_5H_1_0[/tex]) is: [tex]C_5H_1_0 + 7.5O_2 - > 5CO_2 + 5H_2O[/tex].


The combustion of pentene ([tex]C_5H_1_0[/tex]) is a chemical reaction in which pentene reacts with oxygen ([tex]O_2[/tex]) to produce carbon dioxide ([tex]CO_2[/tex]) and water ([tex]H_2O[/tex]). This type of reaction is an example of a complete combustion reaction.

To balance the equation, first, balance the carbon (C) and hydrogen (H) atoms, and then balance the oxygen (O) atoms. The balanced equation for the combustion of pentene is:

[tex]C_5H_1_0 + 7.5O_2 - > 5CO_2 + 5H_2O[/tex].

This equation shows that one molecule of pentene reacts with 7.5 molecules of oxygen to produce five molecules of carbon dioxide and five molecules of water.

For more such questions on combustion, click on:

https://brainly.com/question/13251946

#SPJ11

The balanced equation for the combustion of pentene (C5H10) is: C5H10 + 8O2 -> 5CO2 + 5H2O

In this equation, pentene (C5H10) reacts with oxygen gas (O2) to produce carbon dioxide (CO2) and water (H2O).

The coefficients are balanced to ensure that the number of atoms of each element is the same on both the reactant and product sides.

Specifically, there are 5 carbon atoms, 10 hydrogen atoms, and 16 oxygen atoms on both sides of the equation.

This balanced equation represents the complete combustion of pentene, where sufficient oxygen is present to allow for the complete conversion of the hydrocarbon into CO2 and H2O.

Learn more about combustion here :

https://brainly.com/question/13153771

#SPJ11

the o-s-o bond angle in so2 is slightly less than ________.

Answers

The o-s-o bond angle in SO2 is slightly less than 120 degrees. The exact bond angle in SO2 can vary slightly depending on the experimental conditions and the method used to measure

The SO2 molecule has a bent shape, with two oxygen atoms bonded to the central sulfur atom.

The valence shell electron pair repulsion (VSEPR) theory predicts that the bond angle between these atoms should be 120 degrees, assuming that the lone pairs of electrons on the oxygen atoms have no effect on the bond angle.

However, the actual bond angle in SO2 is slightly less than 120 degrees due to the repulsion between the lone pairs of electrons on the oxygen atoms. The lone pairs occupy a larger volume of space compared to the bonding pairs, which results in a decrease in the bond angle between the sulfur and oxygen atoms.

The exact bond angle in SO2 can vary slightly depending on the experimental conditions and the method used to measure it, but it is typically in the range of 119-120 degrees.

Learn more about molecules here :

https://brainly.com/question/30401694

#SPJ11

for which process would carbon-14 dating be useful in the examination of documents?question 16 options:revealing hidden writings determining the age of paper thickness of the paper determining the type of ink

Answers

Answer:

determining the age of paper

Explanation:

took the test

Carbon-14 dating would be useful in the examination of documents for determining the age of paper.Option (B)

Carbon-14 dating is a radiometric dating method that is used to determine the age of ancient objects, including organic materials like wood and paper. Carbon-14 is a naturally occurring isotope that is present in the atmosphere, and it is taken up by plants and other organisms through photosynthesis. When these organisms die, the carbon-14 starts to decay, and its concentration decreases over time.

By measuring the amount of carbon-14 remaining in a sample of paper, it is possible to determine how old the paper is. This method is useful for examining old documents that may have been written on paper made from wood, as the carbon-14 content of wood varies over time depending on factors like the age of the tree and the location where it was grown.

Learn more about  photosynthesis.

https://brainly.com/question/29764662

#SPJ4

Full Question: "For which process would carbon-14 dating be useful in the examination of documents?"

The options are:

a) Revealing hidden writings

b) Determining the age of paper

c) Thickness of the paper

d) Determining the type of ink

io
Jit
ti
=(
d
Fill in the Blank:
The particles of a gas are spaced from each other. The space between the particles is occupied by2
According to the kinetic theory there are no attractive or repulsive 3 at work between the particles. This explains
constant 5 motion and that collisions between them are elastic. This means that during a collision, the total amount
why gasses 4 their containers. Also according to the kinetic theory the particles of a gas move rapidly in
of 6 remains constant.
The pressure and volume of a fixed mass of gas are 7 related. If the pressure decreases, the volume 8
This relationship is known as 9 law. The volume of a fixed 10 of gas is directly related to its temperature in K.
This relationship is known as _11 law. 12 law states that the pressure of a gas is 13 proportional to the Kelvin
law. It can be used in situations in which 16 of the variables are constant.
temperature if the volume 14. The three separate gas laws can be written as a single expression called the 15 gas
18 are known.
The ideal gas law permits you to solve for the number of _17_ in a contained gas when pressure, volume and
The ideal gas law is described by the formula 19, where the variable 20 represents the number
moles and the letter_21 is the ideal gas constant. R is equal to _22_. A gas that adheres very closely to the gas
re's at some conditions of the temperature and pressure is said to exhibit_23_behavior under those conditions. There
are 24 gasses that behave ideally under all temperatures and pressures. Deviations from ideal behavior can be
explained by the intermolecular_25_ between gas particles and the _26_ of the particles.
Although the particles that make up different gasses vary greatly in size, _27_hypothesis states that equal
volumes of gasses at the same_28_ and temperature contain equal numbers of particles. In brief, 6.02 x 102 particles
or 29 mole of any gas at STP occupies a volume of 30.
The rate of effusion of a gas is 31 proportional to the 32 of the gas's _33_. This relationship is referred to
as 34 35 law of 36 pressure states that the total pressure exerted by a mixture of gasses is equal to the _37_of
all the individual pressures.
Problem Set: Gasses

Answers

The particles of a gas are spaced far apart. The space between the particles is occupied by empty space.

How to explain the information

According to the kinetic theory there are no attractive or repulsive forces at work between the particles. This explains why gasses expand to fill their containers. Also according to the kinetic theory the particles of a gas move rapidly in random motion and that collisions between them are elastic. This means that during a collision, the total amount of energy remains constant.

The pressure and volume of a fixed mass of gas are directly related. If the pressure decreases, the volume increases. This relationship is known as Boyle's law. The volume of a fixed amount of gas is directly related to its temperature in K. This relationship is known as Charles's law. Gay-Lussac's law states that the pressure of a gas is directly proportional to the Kelvin temperature if the volume remains constant. It can be used in situations in which two of the variables are constant.

The temperature of a gas is directly proportional to the average kinetic energy of its particles. If the temperature increases, the average kinetic energy of the particles increases and they move faster. This causes the pressure to increase because the particles collide with the walls of the container more frequently.

The ideal gas law permits you to solve for the number of moles in a contained gas when pressure, volume and temperature are known. The ideal gas law is described by the formula PV = nRT, where the variable n represents the number of moles and the letter R is the ideal gas constant. R = 0.08206 L atm/mol K. A gas that adheres very closely to the gas laws at some conditions of the temperature and pressure is said to exhibit ideal behavior under those conditions. There are no gasses that behave ideally under all temperatures and pressures. Deviations from ideal behavior can be explained by the intermolecular forces between gas particles and the size of the particles.

Although the particles that make up different gasses vary greatly in size, Avogadro's hypothesis states that equal volumes of gasses at the same pressure and temperature contain equal numbers of particles. In brief, 6.02 x 10^23 particles or 1 mole of any gas at STP occupies a volume of 22.4 L.

The rate of effusion of a gas is proportional to the square root of the gas's molar mass. This relationship is referred to as Graham's law.

Dalton's law of partial pressures states that the total pressure exerted by a mixture of gasses is equal to the sum of all the individual pressures.

Learn more about gas on

https://brainly.com/question/25736513

#SPJ1

Which best describes the reaction that takes place between aqueous barium nitrate and aqueous sodium sulfate? a. BaNO_3(aq) + NaSO_4(aq) rightarrow BaSO_4(s) + NaNO_3(aq) b. Ba(NO_3)_2(aq) + Na_2SO_4(aq) rightarrow BaSO_4(aq) + 2 NaNO_3(s) c. Ba(NO_3)_2(aq) + Na_2SO_4(aq) rightarrow BaSO_4(s) + 2 NaNO_3(aq) d. 2 Ba(NO_3)(aq) + Na_2SO_4(aq) rightarrow Ba_2SO_4(s) + 2 NaNO_3(aq) e. Ba(NO_3)_2(aq) + 2 NaSO_4(aq) rightarrow Ba(SO_4)_2(s) + 2 NaNO_3(aq)

Answers

The correct option is c. When aqueous barium nitrate (Ba(NO3)2) is mixed with aqueous sodium sulfate (Na2SO4), a double displacement reaction takes place.

The cation from one compound replaces the cation from the other compound to form two new compounds. In this case, the Ba2+ cation from barium nitrate replaces the Na+ cation from sodium sulfate, forming solid barium sulfate (BaSO4) and aqueous sodium nitrate (NaNO3). The balanced chemical equation is:

Ba(NO3)2(aq) + Na2SO4(aq) → BaSO4(s) + 2 NaNO3(aq)
Barium sulfate is an insoluble compound, which means that it precipitates out of the solution as a solid. This reaction can be used to test for the presence of sulfate ions in a solution. When barium nitrate is added to a solution containing sulfate ions, it will form a white precipitate of barium sulfate. This reaction can also be used in the production of pigments, as barium sulfate is often used as a white pigment in paints, plastics, and other materials.

To know more about double displacement reaction visit:

https://brainly.com/question/29740109

#SPJ11

Other Questions
A good resistance-training technique for developing explosive strength is:_______ The rush-bagot treaty, negotiated by secretary of state john quincy adams in 1817, addressed which issue? Help me with this question please Government whose powers are limited to those authorized by the people.Government whose powers are limited to those authorized by the people.Grecian GovernmentLimited GovernmentAuthoritarian GovernmentRepresentative Government What is a strength and how is it different from a trait or a skill? what is the strength equation? "This kind of thing only happens to me. I don't deserve this."Which stage of grief does the statement represent?AcceptanceAngerBargainingDenial What do you understand by the corpuscular nature of chemistry What type of body form of Cnidarians are tubular shaped and attach themselves to a firm surface?A. polypB. medusaC. nematocystD. spicule Himari gave birth to twins and named them Adrian and Chang. When they were first born, Adrian massed 2.872.872, point, 87 kilograms and was 54.554.554, point, 5 centimeters tall, and Chang massed 4.544.544, point, 54 kilograms and was 515151 centimeters tall.How much did the babies mass in total? By May 25, 1986 every employer must have available for their employees a(n) __________ which meets criteria of the standard for each hazardous chemical in the work place The relative id master role in active directory is a _____ role Let f(x) = 3x and g(x) = x + 3. What's the smallest number that is in the domain offg? What would be the molecular formula of rose oxide which contains C, H, and O and has two degrees of unsaturation and a molecular ion in its mass spectrum at m/z a solution of the equation 3x + y = 15? The most common co-occurring symptom of depression is ___________. What do you mean by divine Counsel? Which word in the excerpt provides a definition for vittles? profit margins are rarely static over time The sum of three numbers $a, b$ and $c$ is 60. If we decrease $a$ by 7, we get the value $N$. If we increase $b$ by 7, we get the value $N$. If we multiply $c$ by 7, we also get the value $N$. What is the value of $N$ Barbara tells her partner she needs more appreciation. What module of dialectical behavior therapy is she working on?