true/false. collision frequency per square centimeter of surface made by o2 molecules

Answers

Answer 1

The statement "collision frequency per square centimeter of surface made by O2 molecules" is false because it is not clear what surface is being referred to.

In a gas-phase reaction, the rate of reaction is determined by the frequency of collisions between the reactant molecules. The collision frequency is dependent on the concentration of the reactants, their velocities, and the surface area available for collisions.

The rate of collision of O2 molecules with a surface can be expressed as the collision frequency per unit area of the surface, also known as the flux. The flux of O2 molecules is dependent on the concentration of O2 and the velocity of the molecules, as well as the surface area available for collisions.

However, we can say that the collision frequency of O2 molecules with a surface is dependent on the concentration of O2, the velocity of the molecules, and the surface area available for collisions.

For more such questions on collision visit:

https://brainly.com/question/29815006

#SPJ11


Related Questions

5.00 mL of 1.60 M HCl diluted to 0.440 L . Express the pH of the solution to three decimal places A mixture formed by adding 55.0 mL of 2.5×10−2 M HClto 120 mL of 1.0×10−2 M HI. Express the pH of the solution to two decimal places.

Answers

pH of first solution is  pH = 1.74, pH of second solution is pH=1.83.

For the first question, we can use the formula:

[tex]$$(1.60 \mathrm{\,M})\times\frac{(5.00\mathrm{\,mL})}{(440\mathrm{\,mL})}=0.0182\mathrm{\,M}$$[/tex]

The concentration of H+ ions in this solution is the same as the concentration of HCl since HCl is a strong acid and dissociates completely in water. Therefore, [tex]$[\mathrm{H}^+]=0.0182\mathrm{\,M}$[/tex].

Taking the negative logarithm, we get:

[tex]$$\mathrm{pH}=-\log_{10}(0.0182)=1.740$$[/tex]

For the second question, we need to determine the concentration of H+ ions in the solution resulting from the reaction of HCl and HI. Since HCl and HI are both strong acids, they will completely dissociate in water, and the resulting solution will contain H+, Cl-, and I- ions.

The moles of H+ ions from HCl is:

[tex]$$(55.0\mathrm{\,mL})\times(2.5\times10^{-2}\mathrm{\,M})=1.38\times10^{-3}\mathrm{\,mol}$$[/tex]

The moles of H+ ions from HI is:

[tex]$$(120\mathrm{\,mL})\times(1.0\times10^{-2}\mathrm{\,M})=1.20\times10^{-3}\mathrm{\,mol}$$[/tex]

The total moles of H+ ions is:

[tex]$$1.38\times10^{-3}\mathrm{\,mol}+1.20\times10^{-3}\mathrm{\,mol}=2.58\times10^{-3}\mathrm{\,mol}$[/tex]$

The total volume of the solution is:

[tex]$$(55.0\mathrm{\,mL})+(120\mathrm{\,mL})=175\mathrm{\,mL}=0.175\mathrm{\,L}$$[/tex]

Therefore, the concentration of H+ ions is:

[tex]$$[\mathrm{H}^+]=\frac{2.58\times10^{-3}\mathrm{\,mol}}{0.175\mathrm{\,L}}=0.0147\mathrm{\,M}$$[/tex]

Taking the negative logarithm, we get:

[tex]$$\mathrm{pH}=-\log_{10}(0.0147)=1.83$$[/tex]

Learn more about pH here:

https://brainly.com/question/15289714

#SPJ11

a polymer is choose... made of choose... , known as choose... . polymers can be natural, such as choose... , or synthetic, such as choose... .

Answers

A polymer is a type of macromolecule made of repeating subunits, known as monomers. Polymers can be natural, such as cellulose or proteins, or synthetic, such as plastics or nylon.


A polymer is a large molecule made of many smaller units called monomers. These monomers bond together to form a long chain. The repeating structure of monomers gives a polymer its unique properties, such as strength and flexibility.

Polymers are a diverse class of materials that are made up of repeating subunits, or monomers. These monomers can be organic or inorganic, and they are connected through covalent bonds to form a chain-like structure. The repeating pattern of monomers gives a polymer its unique properties, such as strength, flexibility, and durability.

Polymers can be natural or synthetic. Natural polymers are produced by living organisms and include proteins, cellulose, and DNA. Synthetic polymers, on the other hand, are produced through chemical reactions in a laboratory. Examples of synthetic polymers include plastics, nylon, and rubber.

To learn more about polymers visit:

brainly.com/question/17354715

#SPJ11

How many moles are in this equation? 25. 0g of Li (Li =6. 94 )

Answers

There are approximately 3.59 moles of Li in 25.0g. ( Divide the mass of Li by its molar mass to find moles.)


To determine the number of moles in the given equation, we need to divide the mass of Li (25.0g) by its molar mass (6.94g/mol). This calculation gives us:

Number of moles = Mass of Li / Molar mass of Li
                = 25.0g / 6.94g/mol
                ≈ 3.59 moles

Therefore, there are approximately 3.59 moles of Li in 25.0g.

This calculation is based on the concept of molar mass, which represents the mass of one mole of a substance. In this case, the molar mass of Li is 6.94g/mol.
By dividing the given mass of Li (25.0g) by its molar mass, we convert the mass into moles. This conversion allows us to compare the quantity of a substance on a consistent basis, irrespective of the sample's mass.

To Learn more about molar mass click here
brainly.com/question/31545539

#SPJ11

Complete and balance the following half-reactions. In each case indicate whether the half- reaction is an oxidation or a reduction. (a) Mo3+ (aq) → Mo(s) (acidic or basic solution) (b)H,Soz (aq) → SO4^2- (aq) (acidic solution) (c) NO3(aq) → NO(g)(acidic solution) (d) O2(g) → H2O(l) (acidic solution) (e) Mn2+ (aq) → MnO2 (s) (basic solution) (f) Cr(OH)3(s) → CrO4^2-(aq) (basic solution) (g) O2(g) → H2O (l) (basic solution)

Answers

(a) Mo3+ (aq) → Mo(s) (acidic or basic solution) (b) H2SO3 (aq) → SO42- (aq) (acidic solution) (c) NO3-(aq) → NO(g) (acidic solution)

(d) O2(g) → H2O(l) (acidic solution)  (e) Mn2+ (aq) → MnO2 (s) (basic solution)

(f) Cr(OH)3(s) → CrO42-(aq) (basic solution)  (g) O2(g) → H2O (l) (basic solution)

(a)This is a reduction half-reaction as Mo3+ is gaining electrons to form Mo(s).

Mo3+ + 3e- → Mo(s)

(b) This is an oxidation half-reaction as H2SO3 is losing electrons to form SO42-.

H2SO3 → SO42- + 2H+ + 2e-

(c) This is a reduction half-reaction as NO3- is gaining electrons to form NO(g).

NO3- + 4H+ + 3e- → NO(g) + 2H2O(l)

(d) This is a reduction half-reaction as O2 is gaining electrons to form H2O(l).

O2 + 4H+ + 4e- → 2H2O(l)

(e) This is an oxidation half-reaction as Mn2+ is losing electrons to form MnO2.

Mn2+ + 4OH- → MnO2 + 2H2O + 4e-

(f) This is an oxidation half-reaction as Cr(OH)3 is losing electrons to form CrO42-.

Cr(OH)3 + 3OH- → CrO42- + 3H2O + 3e-

(g) This is a reduction half-reaction as O2 is gaining electrons to form H2O(l).

O2 + 2H2O + 4e- → 4OH-

Overall, it is important to balance half-reactions to ensure that charge and mass are conserved. Additionally, understanding whether a half-reaction is an oxidation or a reduction is key to constructing balanced redox reactions. In many cases, these reactions involve transfer of electrons, and it is useful to keep track of electron movement as well as which species are being oxidized or reduced.

For more such questions on solution

https://brainly.com/question/30519867

#SPJ11

It is important to balance half-reactions to ensure that charge and mass are conserved. Additionally, understanding whether a half-reaction is an oxidation or a reduction is key to constructing balanced redox reactions.

(a) Mo3+ (aq) → Mo(s) (acidic or basic solution)

(b) H2SO3 (aq) → SO42- (aq) (acidic solution)

(c) NO3-(aq) → NO(g) (acidic solution)

(d) O2(g) → H2O(l) (acidic solution)

(e) Mn2+ (aq) → MnO2 (s) (basic solution)

(f) Cr(OH)3(s) → CrO42-(aq) (basic solution)

(g) O2(g) → H2O (l) (basic solution)

(a)This is a reduction half-reaction as Mo3+ is gaining electrons to form Mo(s).

Mo3+ + 3e- → Mo(s)

(b) This is an oxidation half-reaction as H2SO3 is losing electrons to form SO42-.

H2SO3 → SO42- + 2H+ + 2e-

(c) This is a reduction half-reaction as NO3- is gaining electrons to form NO(g).

NO3- + 4H+ + 3e- → NO(g) + 2H2O(l)

(d) This is a reduction half-reaction as O2 is gaining electrons to form H2O(l).

O2 + 4H+ + 4e- → 2H2O(l)

(e) This is an oxidation half-reaction as Mn2+ is losing electrons to form MnO2.

Mn2+ + 4OH- → MnO2 + 2H2O + 4e-

(f) This is an oxidation half-reaction as Cr(OH)3 is losing electrons to form CrO42-.

Cr(OH)3 + 3OH- → CrO42- + 3H2O + 3e-

(g) This is a reduction half-reaction as O2 is gaining electrons to form H2O(l).

O2 + 2H2O + 4e- → 4OH-

Learn more about solution here:

brainly.com/question/30519867

#SPJ11

The HCl concentration in a gas mixture is reduced from 0. 006 mol fraction of ammonia to 1 % of this value by counter current absorption with water in a packed tower. The flow of the inert gas mixture and water are 0. 03 kmol/m2s and 0. 07 kmol/m2s, respectively. If the equilibrium relationship can be expressed as ye = 1. 55 x where ye is the mol fraction of ammonia in the vapour in equilibrium with a mol fraction x in the liquid. Determine the number of transfer units required to absorb HCl.

Answers

The number of transfer units required to absorb HCl is 0.04 in a gas mixture which can be determined by considering the decrease in the concentration of HCl during counter-current absorption with water in a packed tower.

In counter-current absorption, a gas mixture containing HCl is brought into contact with water in a packed tower to remove the HCl from the gas phase. The equilibrium relationship between the mole fraction of ammonia in the vapour (ye) and the mole fraction in the liquid phase (x) is given as ye = 1.55x.

To calculate the number of transfer units, we need to determine the change in the concentration of HCl. Initially, the HCl concentration is 0.006 mol fraction of ammonia. The HCl concentration is reduced to 1% of this value during absorption. Therefore, the final HCl concentration is 0.006 mol fraction of ammonia * 0.01 = 0.00006 mol fraction of ammonia.

The flow rates of the inert gas mixture and water are given as [tex]0.03 kmol/m^2s[/tex] and [tex]0.07 kmol/m^2s[/tex], respectively. The number of transfer units (NTU) can be calculated using the formula NTU = (L/V) * (x1 - x2), where L is the liquid flow rate, V is the vapor flow rate, x1 is the initial mole fraction of HCl, and x2 is the final mole fraction of HCl.

Substituting the given values into the formula, we have NTU = [tex](0.07 kmol/m^2s) / (0.03 kmol/m^2s) * (0.006 - 0.00006) = 0.04[/tex]. Therefore, the number of transfer units required to absorb HCl is 0.04.

Learn more about ammonia here:

https://brainly.com/question/29519032

#SPJ11

pH of 1.200? The equation described by the What is the Ka of the acid HA given that a 1.80 M solution of the acid has Ka value is HA(aq) + H, O(1) = A (aq) + H2O+(ag) Select the correct answer below: O Ka = 2.29 x 10–3 O Ka = 1.32 x 10-3 Ο Κ. = 0.0631 Ο Κ. = 0.800

Answers

The value of Ka for the acid HA is 2.29 x 10⁻³. Hence, the correct answer is "Ka = 2.29 x 10⁻³".

Using the given equation, we can write the expression for Ka as:

Ka = [A-][H₃O⁺]/[HA]

We need to find the value of Ka for the acid HA, given that a 1.80 M solution of the acid has a pH of 1.200.

We know that pH = -log[H₃O+]. Therefore, [H₃O+] can be calculated as:

[H₃O+] = 10^(-pH) = 10^(-1.200) = 0.0630957 M

Since the acid HA is a monoprotic weak acid, the concentration of the conjugate base A- is equal to the concentration of the H₃O+ ions produced upon dissociation of HA. Therefore, [A-] = [H₃O+] = 0.0630957 M.

The initial concentration of HA is given as 1.80 M. We can assume that the change in the concentration of HA upon dissociation is small compared to the initial concentration, so we can use the approximation [HA] ≈ initial concentration.

Substituting the values in the expression for Ka, we get:

Ka = [A-][H₃O+]/[HA] = (0.0630957)^2/1.80 = 0.002289 = 2.29 x 10⁻³"

To learn more about acid HA refer here:

https://brainly.com/question/1512259#

#SPJ11

given the following reaction, what is the molarity of naoh if 131 ml of 0.200 m h 2so 4 reacts with 70.0 ml of naoh? h 2so 4 2 naoh → na 2so 4 2 h 2o

Answers

The molarity of NaOH is 0.748 M.

To find the molarity of NaOH, we first need to use stoichiometry to determine the amount of NaOH that reacted with the [tex]H_2SO_4[/tex].

From the balanced chemical equation:

[tex]$H_2SO_4 + 2NaOH \rightarrow Na_2SO_4 + 2H_2O$[/tex]

we can see that one mole of [tex]H_2SO_4[/tex] reacts with two moles of NaOH.

Therefore, the number of moles of [tex]H_2SO_4[/tex] that reacted is:

[tex]$0.200 \frac{\text{mol}}{\text{L}} \times 0.131 \text{ L} = 0.0262 \text{ moles H}_2\text{SO}_4$[/tex]

Since the molar ratio of [tex]H_2SO_4[/tex] to NaOH is 1:2, the number of moles of NaOH that reacted is:

0.0262 moles [tex]H_2SO_4[/tex] x 2 moles NaOH/1 mole [tex]H_2SO_4[/tex] = 0.0524 moles NaOH

Now that we know the number of moles of NaOH that reacted, we can use the volume of NaOH and the number of moles of NaOH to calculate the molarity of NaOH:

Molarity of NaOH = moles of NaOH/volume of NaOH (in liters)

Volume of NaOH = 70.0 mL = 0.07 L

Molarity of NaOH = 0.0524 moles NaOH / 0.07 L = 0.748 M

To learn more about molarity

https://brainly.com/question/8732513

#SPJ4

Why are different products obtained when molten and aqueous NaCl are electrolyzed? a. Electrolysis of molten NaCl produces Hz (g) and Cly(), whereas electrolysis of aqueous NaCl produces Na(s) and C12(g). b. Electrolysis of molten NaCl produces Hz (g) and Cl(a), whereas electrolysis of aqueous NaCl produces Na(s) and HCl(g). c. Electrolysis of molten NaCl produces Na(s) and HCl(g), whereas electrolysis of aqueous NaCl produces Hp (g) and Cle(9) d. Electrolysis of molten NaCl produces Na(s) and Cla(g), whereas electrolysis of aqueous NaCl produces H2 (9) and Cl2(g).

Answers

The correct option is:
d. Electrolysis of molten NaCl produces Na(s) and Cl2(g), whereas electrolysis of aqueous NaCl produces H2(g) and Cl2(g).

The difference in the products obtained when molten and aqueous NaCl are electrolyzed is due to the different states of matter of the NaCl. When NaCl is molten, it is in a liquid state, which means the ions are free to move and conduct electricity. Therefore, electrolysis of molten NaCl produces hydrogen gas and chlorine gas. On the other hand, when NaCl is dissolved in water to form aqueous NaCl, it is in a different state of matter where the ions are surrounded by water molecules and do not have the same freedom of movement. Electrolysis of aqueous NaCl produces sodium metal and chlorine gas instead of hydrogen gas, because water is oxidized instead of chloride ions. Overall, the different products obtained are due to the difference in the electrolysis process and the state of matter of NaCl.
Different products are obtained when molten and aqueous NaCl are electrolyzed because of the presence of water in the aqueous solution.

To know more about Electrolysis visit:

https://brainly.com/question/12994141

#SPJ11

Which 1.5 M solution will be the least conductive? Choose all that apply. a) Acetic acid. b) Ethanol. c) Glucose. d) Hydrochloric acid.

Answers

The least conductive 1.5 M solutions among the given options are b) Ethanol and c) Glucose, as they do not produce any ions in the solution.

To determine which 1.5 M solution will be the least conductive. The least conductive solutions will be those with the fewest ions since conductivity is dependent on the presence of ions in the solution. Here are the options:

a) Acetic acid - A weak acid that partially ionizes in water, producing some ions.
b) Ethanol - A non-electrolyte that does not ionize in water, producing no ions.
c) Glucose - A non-electrolyte that does not ionize in water, producing no ions.
d) Hydrochloric acid - A strong acid that completely ionizes in water, producing a large number of ions.

Considering the information above, the least conductive 1.5 M solutions among the given options are b) Ethanol and c) Glucose, as they do not produce any ions in the solution.

To know more about conductivity : https://brainly.com/question/1446556

#SPJ11

For the following reaction at 25 °C:
2 A(aq) → B(aq) + C(aq) ΔGo = –50.5 kJ mol–1
What is ΔG when the initial concentrations are:
[A] = 0.100 M, [B] = 0.010 M, and [C] = 0.010 M
A. –1.15 × 104 kJ mol–1
B. –67.6 kJ mol–1
C. –1.14 × 104 kJ mol–1
D. –61.9 kJ mol–1
E. –39.1 kJ mol–1

Answers

The answer closest to this value ΔG standard Gibbs free energy is B. -67.6 kJ mol–1, so the correct answer is:
B. –67.6 kJ mol–1

To determine the value of ΔG for the given reaction at 25 °C with the specified initial concentrations, we can use the equation:

ΔG = ΔGo + RT ln(Q)

where ΔG is the Gibbs free energy, ΔGo is the standard Gibbs free energy (-50.5 kJ mol–1), R is the gas constant (8.314 J mol–1 K–1), T is the temperature in Kelvin (25 °C + 273.15 = 298.15 K), and Q is the reaction quotient.

First, we'll calculate Q:
Q = ([B][C])/([A]²) = (0.010 * 0.010)/(0.100²) = 0.01/0.01 = 1

Now, we can plug the values into the ΔG equation:
ΔG = -50.5 kJ mol–1 + (8.314 J mol–1 K–1 * 298.15 K * ln(1))

Since ln(1) = 0, the equation becomes:
ΔG = -50.5 kJ mol–1

The answer closest to this value is B. -67.6 kJ mol–1, so the correct answer is:

B. –67.6 kJ mol–1

For more information on standard Gibbs free energy visit:

brainly.com/question/30654218

#SPJ11

Paper coated with cobalt chloride is sold commercially as moisture-sensitive test strips to estimate relative humidity levels between 20 and 80 % in the air. The following reversible reaction takes place with water: CHLOS CoCl(s) + H2O(g) CoCl2 .6H2O(s) blue pink a) What color do you think the paper will be when the humidity is low (20%)? b) What color will it be when humidity is high (80%)? c) Name the product formed in the forward reaction.

Answers

a. Since CoCl(s) is blue in color, the paper coated with cobalt chloride will appear blue under low humidity conditions.

b. Since CoCl2.6H2O(s) is pink in color, the paper coated with cobalt chloride will appear pink under high humidity conditions.

c. The product formed in the forward reaction is hydrated cobalt chloride, CoCl2.6H2O.

a) When the humidity is low (20%), there will be less water vapor in the air to react with the cobalt chloride. As a result, the equilibrium will shift to the left-hand side of the equation, favoring the formation of the anhydrous cobalt chloride (CoCl2) in the solid state. Since CoCl(s) is blue in color, the paper coated with cobalt chloride will appear blue under low humidity conditions.

b) When the humidity is high (80%), there will be more water vapor in the air to react with the cobalt chloride. As a result, the equilibrium will shift to the right-hand side of the equation, favoring the formation of the hydrated cobalt chloride (CoCl2.6H2O) in the solid state. Since CoCl2.6H2O(s) is pink in color, the paper coated with cobalt chloride will appear pink under high humidity conditions.

c) This compound contains six water molecules per formula unit of CoCl2 and is pink in color.

For more question on humidity click on

https://brainly.com/question/21494654

#SPJ11

he following skeletal oxidation-reduction reaction occurs under acidic conditions. Write the balanced OXIDATION half reaction. Cr3+ + Hg →Hg2+ + Cr2+ Reactants ? Products ?

Answers

The balanced OXIDATION half reaction for this skeletal oxidation-reduction reaction is: Cr3+ → Cr2+

In the given reaction, chromium (Cr) is being oxidized as its oxidation state decreases from +3 to +2. Therefore, the oxidation half-reaction would involve the loss of electrons by chromium.

The reactant in the oxidation half-reaction is Cr3+ (chromium ion with an oxidation state of +3) and the product is Cr2+ (chromium ion with an oxidation state of +2).

Hence, the main answer to the question is that the balanced oxidation half-reaction is: Cr3+ → Cr2+.
Hi! To write the balanced oxidation half-reaction for the given skeletal reaction: Cr3+ + Hg → Hg2+ + Cr2+, follow these steps:

Step 1: Identify the species undergoing oxidation
In this reaction, Cr3+ is being reduced to Cr2+ (as its oxidation state decreases), while Hg is being oxidized to Hg2+ (as its oxidation state increases). So, the oxidation half-reaction involves Hg and Hg2+.

Step 2: Write the unbalanced oxidation half-reaction
Hg → Hg2+

Step 3: Balance the atoms other than oxygen and hydrogen
Since there's only one Hg atom on both sides, it is already balanced.

Step 4: Balance the charge by adding electrons (e-)
The product side has a charge of +2, while the reactant side has no charge. Therefore, add 2 electrons to the product side to balance the charge:
Hg → Hg2+ + 2e-

The main answer is the balanced oxidation half-reaction: Hg → Hg2+ + 2e-. This reaction represents the oxidation of Hg to Hg2+ under acidic conditions.

For more information on OXIDATION half reaction visit:

https://brainly.com/question/29141612

#SPJ11

Which atom has the lower K ionization energy? А. Na
B. Be​

Answers

The atom with the lower K ionization energy is sodium (Na). Here option A is the correct answer.

The ionization energy of an atom is defined as the amount of energy required to remove an electron from the outermost shell of an atom. It is a measure of the tendency of an atom to lose an electron and become a cation. The lower the ionization energy of an atom, the easier it is to remove an electron from that atom.

Now, to compare the ionization energies of Na and Be, we can look at their electronic configurations. Sodium (Na) has an electron configuration of [Ne] 3s¹, while Beryllium (Be) has an electron configuration of [He] 2s².

The first ionization energy of sodium is 495.8 kJ/mol, which means it takes this much energy to remove the outermost electron from a sodium atom. On the other hand, the first ionization energy of beryllium is 899.5 kJ/mol, which is significantly higher than that of sodium. This means that it takes more energy to remove an electron from beryllium than from sodium.

To learn more about ionization energy

https://brainly.com/question/28385102

#SPJ4

determine the rate of increase of atmospheric co2 concentrations from 2000 to 2020. remember, rate is calculated as change in some parameter (here, co2 concentration) over time.

Answers

The atmospheric CO2 concentration increased at an average rate of 2.3 ppm/year from 2000 to 2020.

The atmospheric CO2 concentration is measured in parts per million (ppm). According to data from the National Oceanic and Atmospheric Administration (NOAA), the average atmospheric CO2 concentration in 2000 was 369.5 ppm, and in 2020 it was 414.2 ppm. The difference between these two values is 44.7 ppm. To calculate the rate of increase, we divide this difference by the number of years between 2000 and 2020, which is 20. The result is 2.235 ppm/year. Rounding this to one decimal place gives us the rate of increase of atmospheric CO2 concentration as 2.3 ppm/year. This rate of increase is of great concern, as it is contributing to the warming of the planet and the climate change that we are currently experiencing.

learn more about atmospheric here:

https://brainly.com/question/31406689

#SPJ11

a 2.21 mol sample of kr has a volume of 615 ml. how many moles of kr are in a 6.14 l sample at the same temperature and pressure?

Answers

There are approximately 22.05 moles of Kr in a 6.14 L sample at the same temperature and pressure.

To determine the number of moles of Kr in a 6.14 L sample at the same temperature and pressure, we can use the relationship between moles, volume, and pressure, which is constant for a given gas under the same conditions. In this case, we have:
Initial moles (n1) = 2.21 mol
Initial volume (V1) = 615 mL = 0.615 L
Final volume (V2) = 6.14 L
Since the temperature and pressure remain constant, the ratio of moles to volume is also constant. Therefore, we can set up the equation:
n1 / V1 = n2 / V2
Solving for the final moles (n2):
n2 = (n1 * V2) / V1
n2 = (2.21 mol * 6.14 L) / 0.615 L
n2 ≈ 22.05 mol
So, there are approximately 22.05 moles of Kr in a 6.14 L sample at the same temperature and pressure.

To know more about moles visit :

https://brainly.com/question/30759206

#SPJ11

The first two ionization energies of nickel. express your answer as a chemical equation separated by a comma. identify all of the phases in your answer.

Answers

Ni(g) → Ni⁺(g) + e⁻, Ni⁺(g) → Ni²⁺(g) + e⁻; phases represented as (g) for gaseous state.

Nickel is a transition metal with an atomic number of 28. The first two ionization energies of nickel can be expressed by the following chemical equation:

Ni(g) → Ni⁺(g) + e⁻ (first ionization energy)

Ni⁺(g) → Ni²⁺(g) + e⁻ (second ionization energy)

In the first ionization energy, one electron is removed from the neutral nickel atom to form a singly charged nickel ion. In the second ionization energy, an additional electron is removed from the nickel ion to form a doubly charged nickel ion.

The phases of nickel in this chemical equation are represented as (g), which stands for gaseous state. This indicates that the first and second ionization energies of nickel are measured in the gas phase.

The first ionization energy of nickel is 7.64 eV, and the second ionization energy of nickel is 18.17 eV. These values indicate that it requires more energy to remove a second electron from the Ni⁺ ion than to remove the first electron from the neutral Ni atom.

This is due to the stronger electrostatic attraction between the positively charged Ni²⁺ ion and the remaining electron, compared to the attraction between the positively charged Ni⁺ ion and the remaining electron in the first ionization energy.

For more question on gaseous  visit:

https://brainly.com/question/1776161

#SPJ11

Determine if 0. 6250. 625 is rational or irrational and give a reason for your answer

Answers

The number 0.625 is a rational number.

A rational number is a number that can be expressed as a fraction, where both the numerator and the denominator are integers. In the case of 0.625, it can be written as 625/1000, which can be further simplified to 5/8. Since both 5 and 8 are integers, 0.625 is a rational number.

To determine if a decimal number is rational or irrational, we look for a pattern or repetition in the decimal representation. If the decimal terminates or repeats, it is a rational number. In the case of 0.625, it terminates after three decimal places, and it can be expressed as a fraction, meeting the criteria for a rational number.

To learn more about rational number click here : brainly.com/question/17450097

#SPJ11

The industrial degreasing solvent methylene chloride, CH2Cl2, is prepared from methane by reaction with chlorine:
CH4(g)+2Cl2(g)⟶CH2Cl2(g)+2HCl(g).
Use the following data to calculate Δ H∘ in kilojoules for the reaction:
CH4(g)+Cl2(g)⟶CH3Cl(g)+HCl(g)ΔH∘=−98.3kJCH3Cl(g)+Cl2(g)⟶CH2Cl2(g)+HCl(g)ΔH∘=−104kJ

Answers

Methylene chloride is prepared by reacting methane with chlorine in the presence of UV light or high temperature and pressure.

The reaction proceeds via a free-radical mechanism, where chlorine radicals abstract hydrogen atoms from methane to form methyl radicals, which then react with chlorine to form CH2Cl2. The reaction is highly exothermic and must be carefully controlled to prevent unwanted side reactions, such as the formation of chlorinated methane byproducts. The resulting CH2Cl2 product is then purified by distillation and used as a solvent in various industrial processes, such as paint stripping, metal cleaning, and pharmaceutical manufacturing.

Learn more about Methylene chloride here;

https://brainly.com/question/29426391

#SPJ11

How would you go about preparing the solution? Place the steps in order from first to last: First step Last step Niswer Bank Mix until NiCI dissulves completely: Partially Gill the Mask with Waler; Acd thc Ineasuled NuCI the (M) i valunictric Ilask Dilule Ulte sclution: skvwly uduing lnlana uillil Ilc desued volute rec hed. Mcnsutc $Ut Ultc destred Amount o NAcl

Answers

Partially fill the flask with water.Measure out the desired amount of NiCl2.Add the measured NiCl2 to the flask.Stir until the NiCl2 dissolves completely.Dilute the solution by slowly adding water until the desired volume is reached.

What is the process for preparing a solution with nickel chloride and sodium chloride?

To prepare the solution, the first step is to partially fill the volumetric flask with water. Next, the measured amount of NiCl2 is slowly added to the flask while swirling it until it dissolves completely.

Then, the solution is diluted with water until the desired volume is reached, while continuing to swirl the flask. Finally, the solution is mixed thoroughly to ensure the uniform distribution of NiCl2.

Care should be taken to accurately measure the desired amount of NaCl to avoid altering the concentration of the solution.

Learn more about Solution.

brainly.com/question/30665317

#SPJ11

Which of the following chemical species is most likely to undergo chemistry with hydroxide (OH)-: Sulfate, chlorine, carbonate, phosphate, bromine, iodine, or lead.

Answers

The chemical species most likely to undergo chemistry with hydroxide (OH⁻) is phosphate.

This is because hydroxide ion (OH⁻) has a negative charge and phosphate ion (PO₄)³⁻ has a positive charge. Opposite charges attract each other and therefore, phosphate ion is attracted towards hydroxide ion. The reaction between hydroxide and phosphate ions forms a strong base called sodium phosphate, which is used in many industrial processes. Sulfate, chlorine, carbonate, bromine, iodine, and lead do not have a positive charge, and therefore, they are less likely to undergo a reaction with hydroxide ions.

Therefore, out of the given options, phosphate is the chemical species that is most likely to undergo chemistry with hydroxide (OH⁻).

Learn more about hydroxide at https://brainly.com/question/21393201

#SPJ11

adol condensations with ketones can occur under acidic conditions

Answers

Adol condensations with ketones can indeed occur under acidic conditions.Therefore, the choice of acid, solvent, and temperature is crucial for the success of the reaction.

Adol condensations are reactions in which two carbonyl compounds (aldehydes or ketones) react to form a β-hydroxy carbonyl compound. These reactions are usually catalyzed by a base, which abstracts a proton from the carbonyl compound and activates the carbonyl group for nucleophilic attack. However, under acidic conditions, the mechanism of the reaction is different. In this case, the acid protonates the carbonyl compound, which makes it more electrophilic and prone to nucleophilic attack by the enolate formed from the other carbonyl compound. This leads to the formation of the β-hydroxy carbonyl compound.

In the case of acidic conditions, the reaction mechanism involves protonation of the carbonyl group of the ketone, followed by the nucleophilic attack of the enol or enolate ion. The resulting intermediate then undergoes dehydration to yield the final product, a conjugated enone.

To know more about acidic visit:

https://brainly.com/question/14072179

#SPJ11

h81br has a vibration frequency of 2649.7 cm−1 and a bondlength of 141.44 pm. find the wavenumbers of (a) the second r-branch line, (b) the fourth p-branch line.

Answers

(a) The wavenumber of the second R-branch line is 2649.7 cm⁻¹ - 2(2.99 cm⁻¹) = 2643.72 cm⁻¹.

(b) The wavenumber of the fourth P-branch line is 2649.7 cm⁻¹ + 4(2.99 cm⁻¹) = 2662.66 cm⁻¹.

In rotational spectroscopy, the R-branch lines correspond to transitions where the molecule loses a quantum of rotational energy, while the P-branch lines correspond to transitions where the molecule gains a quantum of rotational energy. The wavenumbers of these lines can be calculated using the formula Δν = 2B(J+1), where Δν is the wavenumber difference between two adjacent lines, B is the rotational constant, and J is the quantum number of the lower energy state of the transition. The second R-branch line corresponds to J=2, and the fourth P-branch line corresponds to J=4. Using the given vibration frequency and bond length, the rotational constant for h81br can be calculated and used to find the wavenumbers of these lines.

Learn more about frequency here:

https://brainly.com/question/14316711

#SPJ11

what is the mass (in g) of 0.935 mol of acetone, ch3coch3? the molar mass of acetone is 58.08 g∙mol–1.

Answers

The mass (in g) of 0.935 mol of acetone (CH₃COCH₃) with a molar mass of 58.08 g·mol⁻¹ will be 54.29 g.

To calculate the mass of 0.935 mol of acetone, we can use the formula:

mass = number of moles × molar mass

Substituting the values given, we get:

mass = 0.935 mol × 58.08 g·mol⁻¹

mass = 54.29 g

Therefore, the mass of 0.935 mol of acetone is 54.29 g.

The molar mass of a substance is the mass of one mole of that substance. It is calculated by adding up the atomic masses of all the atoms in the molecule. In the case of acetone, the molecular formula is CH₃COCH₃, which contains 3 carbon atoms, 6 hydrogen atoms, and 1 oxygen atom.

The atomic masses of these elements can be found on the and using these values, we can calculate the molar mass of acetone:

molar mass = (3 × atomic mass of carbon) + (6 × atomic mass of hydrogen) + (1 × atomic mass of oxygen)

molar mass = (3 × 12.01 g·mol⁻¹) + (6 × 1.01 g·mol⁻¹) + (1 × 16.00 g·mol⁻¹)

molar mass = 58.08 g·mol⁻¹

Learn more about molar mass here:

https://brainly.com/question/22997914

#SPJ11

the equilibrium concentrations for a solution of the acid ha are [ha]=1.65 m, [a−]=0.0971 m, and [h3o ]=0.388 m. what is the ka for this acid?
Select the correct answer below:
a. 13.8 b. 0.235 c. 0.0228 d. 1.25

Answers

Therefore, the answer is (c) 0.0228.

The ka value for an acid is a measure of its strength, and it is calculated using the equilibrium concentrations of the acid and its conjugate base. In this case, the given equilibrium concentrations for the acid ha and its conjugate base a- are [ha]=1.65 M and [a-]=0.0971 M, respectively.

The concentration of the hydronium ion, H3O+, is also given as 0.388 M.
The balanced chemical equation for the dissociation of the acid ha is:
ha + H2O ⇌ H3O+ + a-
The equilibrium constant expression for this reaction is:
ka = [H3O+][a-]/[ha]
Substituting the given equilibrium concentrations into this expression, we get:
ka = (0.388 M)(0.0971 M)/(1.65 M)
Simplifying this expression, we get:
ka = 0.0228
For more such question on strength

https://brainly.com/question/27573138

#SPJ11

Based on emission spectrum for sodium, predict what you will physically observe when a solution of aqueous sodium chloride is introduced into a Bunsen burner flame.

Answers

When a solution of aqueous sodium chloride is introduced into a Bunsen burner flame, you will physically observe a characteristic yellow-orange flame color.

This color is a result of the sodium ions in the solution being excited by the flame's heat, causing them to emit light at specific wavelengths corresponding to their emission spectrum.

The most prominent wavelengths in sodium's emission spectrum are around 589 nm (yellow-orange), which gives the flame its distinctive color.

The Bunsen burner flame provides a high-temperature environment, and when the sodium chloride solution is introduced into the flame, it undergoes vaporization and dissociation.

The heat causes the water in the solution to evaporate, leaving behind sodium and chloride ions. These ions are then exposed to the intense heat of the flame, leading to specific interactions that result in the emission of light.

To learn more about chloride, refer below:

https://brainly.com/question/15296925

#SPJ11

How many molecules are there in 450 grams of Na2SO4


(Big numbers are supposed to be exponents

Answers

there are approximately 1.91 x 10^24 molecules in 450 grams of Na2SO4.To determine the number of molecules in 450 grams of Na2SO4, we need to use the concept of Avogadro's number and the molar mass of Na2SO4.

The molar mass of Na2SO4 can be calculated by adding up the atomic masses of its constituent elements:

Na (sodium) = 22.99 g/mol
S (sulfur) = 32.07 g/mol
O (oxygen) = 16.00 g/mol

Molar mass of Na2SO4 = 2(22.99 g/mol) + 32.07 g/mol + 4(16.00 g/mol) = 142.04 g/mol

Now, we can calculate the number of moles in 450 grams of Na2SO4 using the formula:

moles = mass (in grams) / molar mass

moles = 450 g / 142.04 g/mol ≈ 3.17 moles

Finally, we can use Avogadro's number, which states that there are 6.022 x 10^23 molecules in one mole of a substance, to calculate the number of molecules:

number of molecules = moles x Avogadro's number

number of molecules = 3.17 moles x 6.022 x 10^23 molecules/mol ≈ 1.91 x 10^24 molecules

Therefore, there are approximately 1.91 x 10^24 molecules in 450 grams of Na2SO4.

 To  learn  more  about moles click here:brainly.com/question/15209553

#SPJ11

you have 23 moles of tantalum (ta). how many grams is this

Answers

The molar mass of tantalum is approximately 180.94 g/mol.

To convert moles to grams, we can use the following formula:

mass (g) = moles × molar mass

Thus,

mass = 23 mol × 180.94 g/mol = 4160.62 g

Therefore, 23 moles of tantalum is approximately 4160.62 grams.

To know more about tantalum refer here

https://brainly.com/question/24198197#

#SPJ11

The enzyme salivary amylase has an optimum temperature and pH of 98. 6 degrees F and 6-7pH, respectively. What would happen if someone had hypothermia and their body temperature dropped to 65 deg F


and 3-4pH? *

Answers

Hypothermia and a low pH would impair the activity of salivary amylase. The enzyme's catalytic function would be significantly reduced, leading to a decrease in its ability to break down starches in the mouth.

If someone had hypothermia and their body temperature dropped to 65°F, and their pH dropped to 3-4, the enzyme salivary amylase would experience significant changes in its activity. The enzyme's optimal temperature and pH are crucial for its proper functioning, and deviations from these optimal conditions can have detrimental effects.

At a temperature of 65°F, which is significantly lower than the enzyme's optimum of 98.6°F, the activity of salivary amylase would be greatly reduced. Enzymes generally work best within a specific temperature range, and extreme deviations from the optimum can cause the enzyme to become less effective or even inactive. The lower temperature would slow down the enzyme's catalytic activity, resulting in a decrease in its ability to break down starches into smaller sugar molecules.

Similarly, a pH of 3-4, which is significantly lower than the enzyme's optimum pH of 6-7, would also negatively impact the enzyme's activity. Salivary amylase functions optimally in a slightly acidic to neutral pH range. A pH that is too acidic would disrupt the enzyme's structure and affect its ability to bind to its substrate and catalyze the reaction efficiently.

To lean more about Hypothermia  click here : brainly.com/question/6552936

#SPJ11

identify the predominant type of intermolecular force in each of the following compounds. drag each item to the appropriate bin.

Answers

The predominant type of intermolecular force in each of the following compounds are:
- Hydrogen bonding
- London dispersion forces
- Dipole-dipole interactions

Hydrogen bonding is the predominant type of intermolecular force in compounds that contain hydrogen bonded directly to a highly electronegative atom, such as nitrogen, oxygen, or fluorine. This type of bonding is stronger than other intermolecular forces and can result in high boiling points and surface tensions. In the given compounds, ethanol contains a hydrogen bonded directly to an oxygen atom, which allows for hydrogen bonding to occur.

London dispersion forces are the predominant type of intermolecular force in nonpolar compounds, such as hydrocarbons. This type of force results from the temporary dipole that occurs when electrons are unevenly distributed around a molecule. London dispersion forces are the weakest intermolecular force and result in low boiling points and surface tensions. In the given compounds, pentane is a nonpolar hydrocarbon, which allows for London dispersion forces to occur.
To Know more about intermolecular  visit;

https://brainly.com/question/9007693

#SPJ11

what mass of iron(iii) oxide is produced from excess iron metal and 6.8 l of oxygen gas at 102.5°c and 871 torr? 4 fe (s) 3 o2 (g) → 2 fe2o3 (s)

Answers

To solve this problem, we need to use the balanced chemical equation and stoichiometry. 34.7 g of iron(III) oxide is produced from excess iron metal and 6.8 L of oxygen gas at 102.5°C and 871 torr.

From the balanced equation:

4 Fe (s) + 3 O2 (g) → 2 Fe2O3 (s)

we can see that 4 moles of iron react with 3 moles of oxygen gas to produce 2 moles of iron(III) oxide.

Therefore, the ratio of moles of iron(III) oxide produced to moles of oxygen gas used is 2:3.

First, we need to calculate the number of moles of oxygen gas used:

PV = nRT

n = PV/RT

  = (871 torr)(6.8 L)/(0.08206 L·atm/mol·K)(102.5 + 273.15 K)

  = 0.325 mol

Since the stoichiometric ratio of Fe2O3 to O2 is 2:3, the number of moles of Fe2O3 produced is:

n(Fe2O3) = 0.325 mol × (2/3)

                = 0.217 mol

The molar mass of Fe2O3 is 159.69 g/mol. Therefore, the mass of Fe2O3 produced is:

m(Fe2O3) = n(Fe2O3) × M(Fe2O3)

                 = 0.217 mol × 159.69 g/mol

                = 34.7 g

Therefore, 34.7 g of iron(III) oxide is produced from excess iron metal and 6.8 L of oxygen gas at 102.5°C and 871 torr.

To know more about stoichiometry refer here

brainly.com/question/30215297#

#SPJ11

Other Questions
place these four stages that were likely required for life to develop from nonliving matter, according to the order in which they developed. place the first stage at the top. Both Athens and Sparta became ______ and powerful area of a rectangular piece of cloth 3 1/4m by 25 cm Multiply using the generic rectangle. Write your answer in standard form (area as sum)(3x-4)(2x+1) Raj and Nico were riding their skateboards around the block two times to see who could ride faster. Raj first rode around the block in 84. 6 seconds, and second rode around the block in 79. 85 seconds. Nico first rode around the same block in 81. 17 seconds, and second rode around the block in 85. 5 seconds. Which statements are true? Select all that apply. Raj's total time was faster by 2. 22 seconds. Nico's total time was 166. 67 seconds. Raj's total time was 164. 1 seconds. Nico's total time was faster by 2. 57 seconds T/F compared to other nations, the u.s. uses a larger share of its economic resources for health care do batteries in a circuit always supply power to a circuit, or can they absorb power in a circuit? 1)Given the enthalpies of reaction:S(s)+O2(g)SO2(g) H= 297kJ2S(s)+3O2(g)2SO3(g) H = 791 k JCalculate the enthalpy change (H) for the reaction: 2SO2(g)+O2(g)2SO3(g)2)Which of the following is correct?a) The sign of heat (q) is positive when heat is absorbed by a systemb) The sign of heat (q) is negative when heat is absorbed by a systemc) The sign of heat (q) is positive when heat is released by a systemd) No correct answer A potential difference is set up between the plates of a parallel plate capacitor by a battery and then the battery is removed. If the distance between the plates is decreased, then how the (a) charge (b) potential difference (c) electric field (d) energy and (e) energy density will change John receives utility from consuming X and Y as given by the utility function U(X,Y) = XY. The price of X is $9, and the price of Y is $12. a. What is John's MRS (marginal rate of substitution)?. b. What is the optimal mix (ratio) between X and Y in John's market basket? c. John is currently consuming 15 X and 10 Y per time period. Is he consuming an optimal mix of X and Y? Explain How do the speaker's feelings throughout the poem support the theme or message? Solve the following initial value problem. dr/d theta = -pi sin pi theta, r(2) = 2 r = (Type an exact answer, using pi as needed.) Kit made contributions to a Roth IRA over the course of 30 working years. His contributions averaged $4,000 annually. Kit was in the 24% tax bracket during his working years. The average annual rate of return on the account was 6%. Upon retirement, Kit stopped working and making Roth IRA contributions. Instead, he started living on withdrawals from the retirement account. At this point, Kit dropped into the 15% tax bracket. Factoring in taxes, what is the effective value of Kit's Roth IRA at retirement? Assume annual compounding. (3 points)a $287,432. 74b $305,432. 74c $240,336. 88d $298,232. 74 Match each narrative technique to its definition.Match Term DefinitionPacing A) Where the writing is organized and set around the internal thoughts of the narratorForeshadowing B) The view, or opinion, or a text and its elements, as created by a writerStream of consciousness C) The use of short sentences to help speed up and allow the reader to feel unsettledJuxtaposition D) A technique to suggest or show something that happens in the futurePerspective E) The writer places two descriptions, ideas, characters, actions, or events side by side in a text Mei-Mei, the main character from certain excerpts of Amy Tan's novel, The Joy Luck Clubexperiences many changes throughout her life. These include, since about the 1970s, it appears that self-esteem in the u.s. has been ____. complete the sentences describing the male urethra. then arrange the sentences in order, following the flow of urine through the urethra.The ___ urethra is a short segment that passes through a reproductive organ. It receives secretions from two ejaculatory ducts.The ___ urethra passes through the pelvic floor.The ___ urethra is the longest part of the male urethra.Urine exits the urethra via the ___a. external urethral orifice.b. prostatic c. membranousd. penile 1.) Using tne line arawing tooi, depict the etect of a drougnt in idano on the market tor trencn tnes. Draw either Market for French Fries a shift in the supply curve or the demand curve for french fries. Label your curve 2.) Using the point drawing tool, depict the new equilibrium price and quantity. Label your point 'A Carefully follow the instructions above and only draw the required objects. An appendectomy is an operation to have your appendix removed. People who need an appendectomy will pay any price for the operation. Suppose that the demand curve for appendectomies is vertical. There is a technological breakthrough that allows surgeons to perform appendectomies at a much lower cost. 1.) Using the line drawing tool, depict the effect of the technological breakthrough on the market for appendectomies. Draw either a shift in the supply curve or the demand curve for appendectomies. Label your P(S) curve 2.) Using the point drawing tool, depict the new equilibrium price and quantity. Label your point 'A Carefully follow the instructions above and only draw the required objects. Which of the following conditions is the presence of outpouches off the gut? a. diverticulosis b. diaphragmatocele c. polyposis suppose the exchange rate was 104 yen per dollar in 2017 and 110 yen per dollar in 2018. the dollar (click to select) in value and the yen (click to select) in value.